• Title/Summary/Keyword: pumping process

Search Result 201, Processing Time 0.023 seconds

The Experimental Study on the Coefficient of Friction Change Tendency which It Follows in Kinds of Concrete Strength and Pumping Pressure Grade (콘크리트 규격 및 압송압에 따른 마찰계수 변화경향에 대한 실험적 연구)

  • Kwon, Hae-Won;Bae, Yeoun-Ki;Lee, Jae-Sam;Kim, Seog-Il;Kim, Hyun-Seob;Lee, Jong-Seo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05c
    • /
    • pp.69-73
    • /
    • 2009
  • Plan of concrete pumpability test or the theoretical character knowledge in the mechanic is become accomplished with character. But the character knowledge of the concrete is not considered appropriately, The theoretical background and assumed fact is a little different representative characteristic of the concrete. Concrete pumping experiment result it leads consequently and is produced the coefficient of friction which in concrete type and sending in more pressure it follows changes must grasp the tendency which. But until currently the majority experiment and research did not pass by this process. Grasps the coefficient of friction change tendency which it follows in concrete type and when pumping concrete more pressure data fundamentally from the experimental research which it sees consequently under providing the man with underdeveloped genital organ.

  • PDF

Simulation of Design Factor Effects on Performance of Vacuum System (진공시스템 성능에 대한 설계인자 영향 전산모사)

  • Kim, Hyung-Taek;Jeong, Kwang-Pil
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.405-413
    • /
    • 2007
  • Effect of design factors on the performance of vacuum system was simulated for optimum design of system. In this investigation, the feasibility of modelling mechanism for $VacSim^{Multi}$ simulator was proposed. Simulation results of pumping design factor showed the possibilities of simulation fore-study for the detailed design factors. Simulation of roughing pump presented the expected pumping behaviors based on the specifications of commercial pump. Application of booster pump exhibited the high pumping efficiency for middle vacuum range. Combinations of optimum backing pump for diffusion and turbo vacuum system were obtained. And, the characteristics of process application of both systems were also acquired.

The Fabrication and Operational Characteristics of a Novel Type Superconducting Power Supply for Persistent Current Mode (새로운 형태의 영구전류모드용 초전도 전원장치의 제작 및 운전특성)

  • Kim, Ho-Min;Yun, Yong-Su;Go, Tae-Guk;Han, Tae-Su;Jang, Seung-Chan;O, Sang-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.771-777
    • /
    • 2000
  • This paper deals with the design and fabrication of a novel superconducting power supply system, and characteristics have been investigated through experiments. Superconducting power supply consists of rotating and static parts, and superconducting magnet. In this experiment, superconducting foils were placed in parallel within the static part of the machine, pumping currents were measured with respect to rotor speeds and excitation currents. In addition, in order to observe the rotating flux distribution in the superconducting foils, several hall-sensors were placed in it. With the flux distribution acquired, effect of the flux on the superconducting foil during the process of current pumping has been discussed. Also, the general operational characteristics of the superconducting power supply system have been investigated on the basis of the current and voltage data, and magnetic field values acquired through the experiments.

  • PDF

A study on the Detection of Premature Quench Generated in the Process of Current Pumping in a Superconducting Power Supply (초전도 Power Supply의 전류펌핑 과정에서 발생하는 조기 퀜치발생 진단)

  • Kim, Ho-Min;Bae, Joon-Han;Noh, Jeong-Sub;Sim, Ki-Deok;Jang, Won-Kap;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.244-246
    • /
    • 1997
  • This paper is to analyze the Premature Quench characteristics of a rotating magnet type superconducting fluxpump and consider the method of detecting and protecting this premature quench. Practically, there is contact resistance between the fluxpump and the load, namely the S.C. magnet. The thermal increase due to the contact resistance cause the premature quench before the charging current amounts to the critical current of S.C magnet. Therefore, this paper is devoted to solving the heat equation on contact region using cylindrical coordinates and to calculating the rate of thermal increase during the current is pumped up. Doing so, the predictive value of the maximum pumping current is obtained. It has been verified that the results of simulation are coincident with those of experiment. It must be considered essentially to minimize the contact resistance in designing the S.C fluxpump system in order to protect the premature quench and improve the maximum pumping current.

  • PDF

The Analysis of Operating Charateristic of a Rotating Flux type superconducting Power supply with a parallel-sheets (병렬 구조 초전도박막을 이용한 회전 자속형 저온 초전도전원장치의 동작 특성 해석)

  • Kim, Ho-Min;Bae, Joon-Han;Yoon, Yong-Soo;Chu, Yong;Sim, Ki-Deok;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.337-339
    • /
    • 1998
  • This paper deals with the design and fabrication of a novel superconducting power supply system, and characteristics have been analyzed through experiments. Superconducting power supply consists of rotating and static parts, and superconducting magnet. In this experiment, the current-pumping characteristics have been analyzed with superconducting sheets placed in parallel within the static part of the machine. In addition, in order to observe the 3-dimensional flux distribution in the superconducting sheet, several hall-sensors were placed in it. With the flux distribution acquired, the effect of the flux on the superconducting sheet during the process of current pumping have been analyzed. Also, general operational characteristics of the superconducting power supply system have been investigated on the basis of the current and voltage data and magnetic field values acquired through the experiments. In this experiment, maximum pumping current has been achieved to about 1280 amps.

  • PDF

Outgassing and thermal desorption measurement system for parts of CRT (CRT 부품용 탈가스 및 Thermal Desorption 측정장치 개발)

  • Sin, Yong Hyeon;Hong, Seung Su;Mun, Seong Ju;Seo, Il Hwan;Jeong, Gwang Hwa
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.298-307
    • /
    • 1997
  • TDS(Thermal Desorption Spectroscopy)system, for diagnosis of CRT manufacturing process, was designed and constructed. Outgassings and thermal desorptions from the part or materials of CRT can be measured and analysed with this system at various temperatures. The system is consisted of 3 parts, vacuum chamber and pumping system with variable conductance, sample heating stages & their controller, and outgassing measurement devices, like as ion gauge or quadrupole mass spectrometer. The ultimate pressure of the system was under $1{\times}10^{-7}$ Pa. With the variable conductance system, the effective pumping speed of the chamber could be controlled from sub l/s to 100 l/s. The effective pumping speed values were determined by dynamic flow measurement principle. The temperatures and ramp rate of sample were controlled by tungsten heater and PID controller up to 600℃ within ±1℃ difference to setting value. Ion gauge & QMS were calibrated for quantitative measurements. Some examples of TDS measurement data and application on the CRT process analysis were shown.

  • PDF

Intercomparison of vacuum standards of Korea, United Kingdom, and Japan (진공표준의 국제비교 연구)

  • 홍승수;신용현;임종연;이상균;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.308-313
    • /
    • 1997
  • TDS (Thermal Lkso~ption Spectroscopy)system, for diagnosis of CRT manufacturing process, was designed and constructed. Outgassings and themla1 desorptions from the part or materials of CRT can be measured and analysed with this system at various temperatures. The system is consisted of 3 pirrts. vacuum chamher and pumping system with variable conductance, sample heating stages & their controller, and outgassing measurement devices, like as ion gauge or quadrupole mass spectrometer. The ultimate pressure of the system was under $1\times10^{-7}$ Pa. With the variable conductance system, the effective pumping speed of the chamber could he controlled from sub 11s to 100 11s. The effective pumping speed values were determined by dynamic flow measurement principle. The temperatures and ramp rate of sample were controlled by tungsten heater and PID controller up to $600^{\circ}C$ within t $\pm 1^{\circ}C$$difference to setting value. Ion gauge & QMS were calibrated for quantitative measurements. Some examples of TDS measurement data ;ind application on the CRT process analysis were shown.

  • PDF

The Influence of Rapid Thermal Annealing Processed Metal-Semiconductor Contact on Plasmonic Waveguide Under Electrical Pumping

  • Lu, Yang;Zhang, Hui;Mei, Ting
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.130-134
    • /
    • 2016
  • The influence of Au/Ni-based contact formed on a lightly-doped (7.3×1017cm−3, Zn-doped) InGaAsP layer for electrical compensation of surface plasmon polariton (SPP) propagation under various rapid thermal annealing (RTA) conditions has been studied. The active control of SPP propagation is realized by electrically pumping the InGaAsP multiple quantum wells (MQWs) beneath the metal planar waveguide. The metal planar film acts as the electric contact layer and SPP waveguide, simultaneously. The RTA process can lower the metal-semiconductor electric contact resistance. Nevertheless, it inevitably increases the contact interface morphological roughness, which is detrimental to SPP propagation. Based on this dilemma, in this work we focus on studying the influence of RTA conditions on electrical control of SPPs. The experimental results indicate that there is obvious degradation of electrical pumping compensation for SPP propagation loss in the devices annealed at 400℃ compared to those with no annealing treatment. With increasing annealing duration time, more significant degradation of the active performance is observed even under sufficient current injection. When the annealing temperature is set at 400℃ and the duration time approaches 60s, the SPP propagation is nearly no longer supported as the waveguide surface morphology is severely changed. It seems that eutectic mixture stemming from the RTA process significantly increases the metal film roughness and interferes with the SPP signal propagation.

Numerical Analysis for Prediction of the Residual Gas Fraction, Volumetric Efficiency and Pumping Loss with Continuous Variable Valve Lift System in an SI Engine (가변밸브 작동기구를 적용한 가솔린 기관의 잔류가스분율, 체적효율, 펌핑손실 예측을 위한 해석적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Jang, Ik-Kyoo;Park, Jung-kwon;Yoon, Yu-Bin;Park, Young-Joon;Kim, Hyun-Chul;Na, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.7-13
    • /
    • 2010
  • To satisfy the needs on fuel economy and engine performance, continuous variable valve lift systems are applying to engines. In the CVVL system, fuel economy can be improved by reducing pumping loss during the induction process, and engine performance can be also improved by controlling volumetric efficiency and the residual gas fraction. Because the residual gas fraction directly affects volumetric efficiency, engine performance, combustion efficiency and emissions in SI engines, controlling residual gas fraction is one of the important things in engine development process. This analysis investigates the residual gas fraction and volumetric efficiency with changes of intake valve lifts and intake valve timings. In this study, unsteady state solutions were solved during exhaust and induction processes. Results show variation of the residual gas fraction and volumetric efficiency by changing intake valve timing and lift. Decreasing intake valve lift leads to increase the residual gas fraction and to decrease volumetric efficiency.

Operating Characteristics of Low Vacuum Pumps (저진공 펌프의 운전 특성)

  • 임종연;심우건;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.93-104
    • /
    • 2003
  • For evaluation of durability of low vacuum pumps, it is required to examine the performance and degradation of low vacuum pumps. Pump degradation may result from abnormalities associated with the performance in many areas of pump operation. The diagnostics method can be used to monitor the pump performance in the semi-conductor process line. Based on the mechanical defect of the pump, the dynamic response and reliability of the system for performance test, and the dynamic characteristics of the pump were experimentally assessed. The theoretical work rate for the compression process in the pump was calculated, and then the efficiency of the pump associated with the power consumption was evaluated. This analysis will be useful in detecting pump degradation with increasing the power consumption. To determine the predominant factors of pump degradation, it is important to evaluate the entire pumping system. We studied vibration, dynamic pressure, pumping speed, and power consumption of low vacuum pumps. Our results can be utilized for the future research on the evaluating technology of durability of low vacuum pumps.