• 제목/요약/키워드: pumping pressure

검색결과 343건 처리시간 0.024초

Experimental Approach to Equalizing the Orifice Method with the Throughput One for the Measurement of TMP Pumping Speed

  • Lim, J.Y.;Kang, S.B.;Shin, J.H.;Koh, D.Y.;Cheung, W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.18-18
    • /
    • 2010
  • Methods of the characteristics evaluation of turbo-molecular pumps (TMP) are well-defined in the international measurement standards such as ISO, PNEUROP, DIN, JIS, and AVS. The Vacuum Center in the Korea Research Institute of Standards and Science has recently designed, constructed, and established the integrated characteristics evaluation system of TMPs based on the international documents by continuously pursuing and acquiring the reliable international credibility through measurement perfection. The measurement of TMP pumping speed is normally performed with the throughput and orifice methods dependent on the mass flow regions. However, in the UHV range of the molecular flow region, the high uncertainties of the gauges, mass flow rates, and conductance are too critical to precisely accumulate reliable data. With UHV gauges of uncertainties less than 15% and a calculated conductance of the orifice, about 35% of pumping speed uncertainties are experimentally derived in the pressure range of less than $10^{-6}$ mbar. In order to solve the uncertainty problems of pumping speeds in the UHV range, we introduced an SRG with 1% accuracy and a constant volume flow meter (CVFM) to measure the finite mass flow rates down to $10^{-3}$ mbar-L/s with 3% uncertainty for the throughput method. In this way we have performed the measurement of pumping speed down to less than $10^{-6}$ mbar with an uncertainty of 6% for a 1000 L/s TMP. In this article we suggest that the CVFM has an ability to measure the conductance of the orifice experimentally with flowing the known mass through the orifice chambers, so that we may overcome the discontinuity problem encountering during introducing two measurement methods in one pumping speed evaluation sequence.

  • PDF

HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구 (Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS)

  • 고영진
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.

새로운 조합 펌프를 사용한 스테인레스 스틸 극고진공 시스템 (Stainless-steel sxtreme high vacuum system with a new combination pump)

  • 전인규;조복래;정석민
    • 한국진공학회지
    • /
    • 제7권1호
    • /
    • pp.1-4
    • /
    • 1998
  • 이온 펌프의 중심에 네그(Non-Evaporable Getters)가 삽입된 새로운 조합 펌프를 사용하여 극고진공 시스템을 구현하였다. 진공 용기는 터보 분자 펌프만으로도 극고진공에 성공하였던, $450^{\circ}C$에서 잘 산화된 304 스테인레스 스틸 쳄버를 사용하였다. 시스템의 압력은 Leybold사의 EXG(Extractor Gauge)로 측정하였으나, 본 실험에서의 최고 진공도는 이미 그 게이지의 측정 한계인 1~$2\times10^{-12}$torr범위를 훨씬 지나 게이지 지시가 $-0\times10^{-12}$torr를 읽교 있는 극고진공에 도달해 있었다. 이는 효과적인 네그 활성화로 수소 가스에 대한 배기 속도 를 크게 향상시켜준 결과라 볼 수 있다. 또한 본 실험은 극고진공 표면 분석 장치의 실현 가능성을 시사해주는 것으로, 앞으로의 초미세 표면 과학에 있어서 새로운 장을 열어줄 것 으로 기대된다.

  • PDF

고도에 따른 제동 성능 예측을 위한 엔진 흡기압 모델링 (Modeling of Engine Intake Pressure for Predicting Braking Performance Affected by Altitude)

  • 안광만;이지석;박진일;이종화
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.228-233
    • /
    • 2014
  • Reduction of the atmospheric pressure in high altitude affects brake booster system which was operated by the difference between the intake pressure and the atmospheric pressure. So, braking system can not stably perform due to decrease of brake boost pressure. In this study, effects of altitude change on engine intake pressure was analyzed by prediction model of engine intake pressure which was studied previously. And engine intake pressure was simulated by simulation model in various driving conditions and environmental conditions.

누설특성을 고려한 GDI 엔진용 연료펌프의 고압생성 증진에 관한 연구 (A Study on the Pressure Increment of Fuel Pump for GDI Engines Considering Leakage Flows)

  • 나병철;김병수;최석우
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.785-791
    • /
    • 2000
  • GDI (Gasoline Direct Injection) engines are considered as one of the candidates for next generation engines of passenger cars, which reduce exhaust emissions and fuel consumption. In GOI engines, a high-pressure gasoline supply system is required to directly inject the fuel to combustion chambers. Because of low lubricity of gasoline fuel, the clearance between a plunger and a barrel in GDI fuel pumps is too wide to achieve smooth hydrodynamic lubrication. Thus, it is difficult to generate high-pressure condition in GDI fuel pump since large amount of leakage flow occurs between the plunger and the barrel In this study, an optimum plunger design is presented to minimize leakage in the aspect of flow control. This paper analyzes leakage flow characteristics in the clearance to improve pumping performance of GDI fuel pumps. Effects of groove in the plunger are studied according to variations of depth and width. Evaluations of pumping performance are determined by the amount of pressure drop in the leakage path assuming a constant leakage flows. Both of turbulence and incompressible models are introduced in CFD (Computational Fluid Dynamics) analysis. Design parameters have been introduced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted. As results of CFD analysis in various geometrical cases, optimum groove depths have been found to generate maximum sealing effects on gasoline fuel between the plunger and the barrel. This procedure offers a methodological way of an enhancement of plunger design for high-pressure GDI fuel pumps.

커먼레일 시스템용 고압펌프의 성능 특성에 관한 연구 (A Study on the Performance Characteristic of Common Rail High Pressure Pump)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.5-10
    • /
    • 2013
  • Diesel engines have the advantages of good fuel efficiency and low emissions. Therefore, car makers have been developed various kinds of diesel engine management system to clean up emissions while improving fuel efficiency. One of them is the common rail system. In the common rail system, diesel fuel is injected into the combustion chamber at ultra high pressures up to 1,800 bar to ensure more complete combustion for cleaner exhaust gas, and highly precise multiple injection reduces NOx emission, combustion noise and vibration. Generally speaking, common rail system consists of booster pump, high pressure pump, common rail, injectors, control valves, and sensors. The high pressure pump receives low pressure fuel from the booster pump and supply high pressure fuel to injectors through the high pressure common injection rail. Therefore, high pressure pump has an important role in common rail system. In this paper, we have investigated the performance of high pressure pump of common rail system.

공업용수 공급시스템의 효율적인 운영을 위한 시스템다이내믹스 모형의 개발 (Development of a System Dynamics Computer Model for Efficient Operations of an Industrial Water Supply System)

  • 김봉재;박수완;김태영;전대훈
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.383-397
    • /
    • 2012
  • In this study, a System Dynamics (SD) simulation model for the efficient operations of an industrial water supply system was developed by investigating the feedback loop mechanisms involved in the operations of the system. The system was modeled so that as demand is determined the water supply quantity of intake pumping stations and dams are allocated. The main feedback loop showed that many variables such as the combinations of pump operation, unit electric power(kWh/$m^3$), unit electric power costs(won/$m^3$), water level of water way tunnel, suction pressure and discharge of pumping station, and tank and service reservoir water level had causal effects and produced results depending on their causal relationship. The configurations of the model included an intake pumping station model, water way tunnel model, pumping station model (including the tank and service reservoir water level control model), and unit electric power model. The model was verified using the data from the case study industrial water supply system that consisted of a water treatment plant, two pumping stations and four dams with an annual energy costs of 5 billion won. It was shown that the electric power costs could have been saved 7~26% during the past six years if the operations had been based on the findings of this study.

Multi-condition optimization and experimental verification of impeller for a marine centrifugal pump

  • Wang, Kai;Luo, Guangzhao;Li, Yu;Xia, Ruichao;Liu, Houlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.71-84
    • /
    • 2020
  • In order to improve the performance of marine centrifugal pump, a centrifugal pump whose specific speed is 66.7 was selected for the research. Outlet diameter D2, outlet width b2, blade outlet angle β2, blade wrap φ and blade number z of the impeller were chosen as the variables. The maximum weighted average efficiency and the minimum vibration intensity at the base were calculated as objectives. Based on the Latin Hypercube method, the impeller was numerically optimized. The numerical results show that after optimization, the amplitudes of pressure fluctuation on the main frequency at different monitoring points decrease in varying degrees. The radial force on impeller decreases obviously under off-design flow rates and is more symmetrical during the operation of the pump. The variation of the axial force is relatively small, which has no obvious relationship with the rotating angle of the impeller. The energy performance and vibration experiment was performed for verifying. The test results show that the weighted average efficiency under 0.8Qd, 1.0Qd and 1.2Qd increases by 4.3% after optimization. The maximal vibration intensity at M1-M4 on the pump base reduced from 0.36 mm/s to 0.25 mm/s, decreasing by 30.5%. In addition, the vibration velocities of bracket in pump side and outlet flange also have significant reductions.

인조신경망을 이용한 좌심실보조장치의 동적 모델링

  • 김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.346-350
    • /
    • 1996
  • This paper presents a Neural Network Identification (NNI) method for modeling of highly complicated nonlinear and time varing human system with a pneumatically driven mock circulation system of Left Ventricular Assist Device(LVD). This system consists of electronic circuits and pneumatic driving circuits. The initation of systole and the pumping duration can be determined by the computer program. The line pressure from a pressure transducer inserted in the pneumatic line was recorded. System modeling is completed using the adaptively trained backpropagation learning algorithms with input variables, Heart Rate(HR), Systole-Diastole Rate(SDR), which can vary state of system, and preload, afterload, which indicate the systemic dynamic characteristics and output parameters are preload, afterload.

  • PDF

Free molecule transmission probability of a conical tube with wall sorption

  • 인상렬
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 1998
  • The uniform distributed pumping model is used to derive analytic expressions of the pressure profile for the molecular flow regime in linearly tapered or flared(conical or pyramidal) tubes with wall sorption. The concept of transmission conductance for sticky tubes of arbitrary shape is newly introduced to calculate the transmission probability using the pressure profile. The transmission probability obtained analytically for a conical sticky tube is compared with that from the Monte Carlo simulation.