• Title/Summary/Keyword: pumping effect

Search Result 288, Processing Time 0.026 seconds

Study on Basic Performance Test of Electroosmotic Pump with Porous Glass Slit. (다공성 유리 슬릿 EO펌프 기초 성능 측정 연구)

  • Seo, Sang-Tae;Park, Cheol-Woo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.59-62
    • /
    • 2007
  • The basic concept and preliminary performance results of a miniaturized electroosmotic (EO) pump with diaphragms were included in the present study. The separation of an electroosmotic pumping liquid from a drug using diaphragms is mainly to have a freedom in choosing an electroosmotic pumping liquid and to achieve the optimal drug delivery, and, preferably its precise control. We performed maximum flow rate, maximum pressure, and maximum current measurements with and without diaphragm designs. As a result, the effect of diaphragms on pump performance at the maximum condition is small. However, the presence of diaphragms does not allow indefinite continuous pumping.

  • PDF

A Study on Effects of Piston Pumping Phase on Vibration and Noises of Tandem Swash Plate Type Axial Piston Pump(1) (피스톤 펌핑 위상이 텐덤형 사판식 액셜 피스톤 펌프의 진동 ${\cdot}$ 소음에 미치는 영향에 관한 연구(1))

  • Park, Sung-Hwan;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.74-82
    • /
    • 1999
  • To meet the needs of the hydraulic excavator of large capacity, tandem axial type piston pump which is high pressure and high speed have been developed. But inevitably we can not help facing the problem of noise at that time. In order to reduce the noise of this pump, many researchers have been studying the problem of oil distribution manner. But they are not interested in the symmetric structure of tandem type pump. So, focusing on the symmetric structure of tandem type pump, this paper analyzed unbalanced force developed in the pump chamber and verified the effect of the pumping phase of the piston on vibration and noise of the tandem axial type piston pump theoretically.

  • PDF

Simulation of Vacuum Characteristics in Semiconductor Processing Vacuum System by the Combination of Vacuum Pumps (진공펌프 조합에 의한 반도체공정 진공시스템 진공특성 전산모사)

  • Kim, Hyung-Taek;Kim, Dae-Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.449-457
    • /
    • 2011
  • Effect of pump combinations on the vacuum characteristics of vacuum system was simulated for optimum design of system. In this investigation, the feasibility of modelling mechanism for VacSimMulti simulator was proposed. Simulation results of various pumping combinations showed the possibilities and reliabilities of simulation for the performance of vacuum system in specific semiconductor processing. Simulation of roughing pump presented the expected pumping behaviors based on commercial specifications of employed pumps. Application of booster pump exhibited the high pumping efficiency for middle vacuum range. Combinations of optimum backing pump for diffusion and turbo vacuum system were obtained. And, the predictable characteristics of process application of both simulated systems were also acquired.

The Effects of Additional Factors on the Engine Friction Characteristics (엔진 마찰 특성에 미치는 부수적 인자의 영향)

  • Cho, Myung-Rae;Kim, Joong-Soo;Oh, Dae-Yoon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2159-2164
    • /
    • 2002
  • This paper reports on the effects of additional factors on the engine friction characteristics. The total friction loss of engine is composed of pumping and mechanical friction loss. The pumping loss was calculated from the cylinder pressure, and the mechanical friction loss was measured by strip-down method under the motoring condition. The various parameters were tested. The engine friction loss was much affected by oil and coolant temperature. The low viscosity oil was very effective to reduce the friction loss, and friction modifier was very useful to reduce the friction loss at lower engine speed. The engine friction loss was varied with engine running time because of surface roughness decreasing and oil degradation. To prevent oil-churning effect, it was very important to maintain the proper oil level. The presented results will be very useful to understand friction characteristics of engine.

Effect of Underwater Pumping on the Strength of High-Strength Grout (수중펌프압송이 고강도 그라우트의 강도에 미치는 영향)

  • Kim, Beom-Hwi;Yi, Chong-Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.193-194
    • /
    • 2022
  • The use of high-strength grout for facility foundations and bridges has recently been expanding in offshore wind farms. Offshore wind farms require a bearing capacity for horizontal loads such as wind, waves. Therefore, in this study, the strength of the high-strength grout discharged through pump pressure was measured and compared with the existing strength to secure the strength after the underwater pump pressure of the high-strength grout used in the offshore wind connection. The compressive strength measurement showed that the strength difference at each position of the core specimen was 1% higher than that of the other specimens, and there was almost no change in the strength according to the height. The strength of the core specimen decreased by 23% compared to the existing strength, which is similar to the result of this study because the strength of the core specimen decreased by approximately 25% compared to the general specimen according to related research. Therefore, it is believed that there is no decrease in strength due to underwater pumping.

  • PDF

A Comparison of Simulation Characteristics of VacCAD and VacTran as Vacuum Simulator

  • Hyung-Taek Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.217-223
    • /
    • 2023
  • In this study, we compared the VacCAD and VacTran, commercial vacuum simulators, to investigate the simulation applicability and efficiency as vacuum simulation software. It was verified on reliability and simplicity of simulation modelling, and characteristics of the pump combinations, pumping down curves, and employed vacuum materials. First, usability of simulation schematics was estimated through the modeling tools and the overall simulation characteristics of each simulator were compared to evaluate the applicability in practice. Simulation reliability of each simulator was also probed by comparing the pumping performance characteristics of commercial high vacuum system models. In addition, the degree of tolerances on both simulators was also evaluated through pumping down analysis considering outgassing effect due to chamber material variations. The higher effectiveness and expediency of VacCAD than VacTran has been presented, and it was also expected that the utilization of VacTan in vacuum applications to be increased due to the higher availability of modelling variations.

A Numerical Analysis on Mixing Performance for Various Types of Turbine Impeller in a Stirred Vessel (교반기 내 터빈 임펠러 형태에 따른 교반성능에 대한 수치해석적 연구)

  • Choi, Younguk;Choi, Jongrak;Kim, Daejoong;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • In the present study, a numerical simulation to analyze mixing performance inside an industrial mixer was investigated for various geometry of turbine impellers. Various pitching angles and various types of turbine blades were considered in the simulation. In order to model the rotation of impeller, the Multiple Reference Frames (MRF) technique was used. For evaluation of the effect of various shapes on the mixing performance, dimensionless coefficient such as flow coefficient, circulation coefficient, power coefficient, pumping effectiveness and circulation effectiveness were used. From the results, the effect of pitching angle of a pitched turbine impeller was to give best pumping effectiveness around $30^{\circ}$ pitching angle, whereas best circulation effectiveness around $65^{\circ}$ pitching angle. Dual pitched turbine impeller showed best performance in both pumping effectiveness and circulation effectiveness among impeller types considered in the present study.

Numerical Simulation of Water Quality Enhancement by Removal of Contaminated Bed Material (하상오염물 제거에 의한 수질개선효과 수치모델링)

  • Lee, Nam-Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.349-357
    • /
    • 2011
  • This study has an objective to estimate effect on water-quality enhancement by removal of contaminated river-bed material using a two-dimensional numerical modeling in the Seonakdong River, the Pyunggang River and the Maekdo River. RMA2 and RMA4 models were used for flow and contaminant transport simulation, respectively. After the analysis of the effects of flow restoration plan for the Seonakdong River system made by Lee et al (2008), simulation have been performed about scenarios which contains operations of the Daejeo Gate, the Noksan Gate, the Makdo Gate (on planning), and the Noksan Pumping Station. Because there is no option for elution from bed sediment in the RMA4 model, a simple technique has been used for initial condition modification for elution. The analyses revealed that the effect on water quality improvement due to dredging of bed sediment seemed to be less than 10 % of the total effect. The most efficient measure for the water quality improvement of the river system was the linked operation of water-gates and pumping station.

Evaluation of Stream Depletion from Groundwater Pumping in Deep Aquifer Using An Analytical Model (해석적 모형을 이용한 심부대수층 지하수 양수로 인한 하천수 감소량 분석)

  • Lee, Jeongwoo;Chung, Il-Moon;Kim, Nam Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.769-777
    • /
    • 2016
  • The objective of this study was to evaluate the stream depletion from groundwater pumping in deep aquifer using the Ward and Lough's analytical solution (2011) which considers a two-layer leaky aquifer system. The calculated results for each pumping from the 110 wells beside streams showed a wide range of non-dimensional stream depletion, that is the streamflow depletion rate divided by the groundwater pumping rate, from lower than 0.1 to more than 0.9 on average for 5 years depending on the specific properties of well location. From the comparison with Hunt's solution (1999) of a single layer aquifer, the Ward and Lough's solution showed about 50% lower than the Hunt's solution due to the difference of hydraulic properties between the first and second layers as well as the lagged effect of vertical leakance. It was also found that the groundwater pumping has a minor effect on the stream depletion if the stream depletion factor (SDF) of the 1st layer is higher than about 1,000 or the SDF of the 2nd layer is higher than about 100, or the vertical leakance is smaller than $10^{-5}s^{-1}$. Furthermore, in the present study, the variations of the stream depletion were assessed according to the magnitude of unmeasured hydraulic properties such as transmissivity and storage coefficient of the 1st layer, vertical hydraulic conductivity of the 2nd layer, the streambed hydraulic conductance.