• 제목/요약/키워드: pump power

검색결과 1,421건 처리시간 0.023초

Temperature analysis of extra vessel electromagnetic pump cooling for a Micro nuclear reactor with an electric power of 20 MW

  • Tae Uk Kang;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.275-282
    • /
    • 2024
  • Lead bismuth eutectic (LBE) is used as coolant for MicroURANUS, a small marine nuclear power plant, and this coolant is transported in the plant by an electromagnetic pump. Given the considerable heat generated by the electromagnetic pump, the cooling of the pump is essential. This study compared air cooling and water-cooling methods and found that the maximum temperatures during air and water cooling were 640 K and 372 K, respectively. These findings were utilized to design an electromagnetic pump with water-cooling. The maximum temperature of the pump was lower than the boiling point of water; thus, the pump did not require a separate pressurization. Consequently, the resistance problem of the coil and the deformation problem of the material caused by generated heat can be solved through water-cooling.

태양광에너지 시스템이 결합된 HTS 자속펌프의 제작 및 예비실험 (Fabrication and Test of HTS Flux Pump Combined with Solar Energy System)

  • 김대욱;정윤도;조현철;윤용수;김현기;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권1호
    • /
    • pp.22-26
    • /
    • 2011
  • As new one of superconducting power supplies, we proposed an HTS flux pump utilized a solar energy system. As an eternal electric energy can be converted by the solar system, the solar energy system is promisingly applied as an energy source in the power applications. Especially, since the solar energy system played a role in conventional utility power, total power consumption of the flux pump system are provided by solar energy. That means its operating efficiency is remarkably improved compared with developed flux pumps. A solar energy system is comprised of solar panel, photo-voltaic (PV) controller, converter and battery. The HTS flux pump consists of an electromagnet, two thermal heaters and a Bi-2223 magnet. In this paper, we describe the possibility the fusion technology between superconducting power supply and solar energy system. As a fundamental step, the fabrication, structure and experimental results are explained.

펌프의 저 유량 운전특성에 관한 실험적 연구 (An Experimental Study on the Pump Operating Characteristics with Low Flow Operation)

  • 오광석;신필권;박종호;심우건;조두연
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.85-96
    • /
    • 1999
  • For ASME Code pumps in nuclear power plants, inservice test is required to assess the operational readiness in accordance with ASME code and related regulations. The objective of this study therefore, is to develop the technical background of the degradation of pump performances and conditions due to low flow rate operation. In addition. the detection techniques of pump operating conditions are to be developed to enhance the safety and economy of nuclear power plants. A test loop consisted of pump, motor. water tank, flow rate measurements and piping system with flow control devices was established for this study. Two typical pumps, 1-stage volute pump and 3-stage turbine pump, were selected and the test was performed upon two major point of views ; i.e., pump discharge pressure pulsations analysis and pump vibration spectrum analysis. From the test results, it is concluded that (1) the pump vibration affected by the natural frequency of operating pump is significant in the low frequency zone (around 1 Hz) : the vibration amplitude. especially. is an important factor during low flow rate operation. and shall be monitored to ensure that it is within the limit of ASME OM code Part 6, (2) the vibration frequency and pump discharge pressure are affected by vane pass frequency and running speed, (3) the wave phenomena due to the compressiblity of water is anticipated during low flow rate operation. and the pump system shall be designed to prevent it and. finally, (4) the technical background of the degradation of pump performances and conditions due to low flow rate operation is provided.

  • PDF

CMOS 이미지 센서를 위한 고효율 Charge Pump (High-Efficiency Charge Pump for CMOS Image Sensor)

  • 김주하;전영현;공배선
    • 대한전자공학회논문지SD
    • /
    • 제45권5호
    • /
    • pp.50-57
    • /
    • 2008
  • 본 논문에서는 CMOS image sensor(CIS)에서 사용될 수 있는 고 효율 charge pump를 제안하였다. 제안된 charge pump는 CIS의 동작 특성을 활용하여 switching loss 및 reversion loss를 최소화하여 고 효율 동작을 실현하였다. 즉, CIS 픽셀 동작 구간에 따라 local clock driver, 펌핑 커패시터, 그리고 charge 전달 switch의 크기를 역동적으로 조절함으로써 switching loss 를 최소화하였다. 또한, schmitt trigger를 채용한 tri-state local clock driver를 이용하여 non-overlapping 구간이 충분히 확보된 local clock을 공급할 수 있게 함으로써 reversion loss를 최소화하였다. 0.13-um CMOS 공정을 이용한 시뮬레이션 비교 결과, 제안된 charge pump는 구동 전류가 없는 조건에서 기존 구조에 비해 최대 49.1% 전력 소모를 개선하였으며, 구동 전류가 최대인 조건에서는 19.0% 전력 소모를 개선할 수 있었음을 확인하였다.

Intelligent Power Module의 플로팅 게이트 전원 공급을 위한 전하 펌프 회로의 설계 (Design of Charge Pump Circuit for Floating Gate Power Supply of Intelligent Power Module)

  • 임정규;정세교
    • 전력전자학회논문지
    • /
    • 제13권2호
    • /
    • pp.135-144
    • /
    • 2008
  • 일반적으로 Intelligent power module (IPM)의 상부 스위치 구동을 위한 플로팅 전원 공급 방법으로 부트스트랩 회로가 많이 사용되고 있다. 부트스트랩 회로는 구성이 간단하고 집적화가 가능하다는 장점이 있으나 몇 가지 문제점을 가지고 있다. 상부 스위치 게이트 드라이버 회로에 전원을 공급하기 위해 매 주기마다 충분한 에너지를 충전할 수 있는 시간이 요구되며, 충전된 에너지는 한정적이므로 스위치 턴 온 (turn-on)시간의 제한을 갖게 된다. 그리고 주파수가 낮아질수록 부트스트랩 커패시터 용량이 증가하여 집적화에 장애요인이 된다. 이러한 단점은 전하 펌프 회로를 사용함으로써 보완될 수 있다. 본 논문에서는 IPM의 플로팅 전원 공급 방법으로 전하 펌프 회로를 적용하여 분석하였으며, 이러한 분석을 기반으로 전하 펌프 회로의 설계 방법을 제안하였다. 분석과 제안된 설계 방법의 타당성을 검증하기 위하여 시뮬레이션과 실험을 수행하였으며, 제시된 결과는 제안된 설계 방법의 유용성을 입증하였다.

동력조향용 압력평형형 베인펌프의 유량맥동 계측 (Measurement of Flow Ripple Generated by Balanced Vane Pumps in Automotive Power Steering Systems)

  • 김도태;김진
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.70-78
    • /
    • 2000
  • A balanced vane pump for the use of automotive power steering systems generates a flow ripple which is imposed upon the mean flow rate. The flow ripple interacts with the characteristics of the connected pipes, valves and steering gear in a complex manner to produce a pressure ripple, also known as fluid-borne noise. In order to reduce vibration level and produce quieter and more reliable power steering systems, it is important to measure the flow ripple produced by a pump with high accuracy and fast response. In this paper, the flow ripple generated by a vane pump in automotive power steering systems is measured by the remote instantaneous flow rate measurement method (RIFM) using hydraulic pipeline dynamics. In experiment, flow and pressure ripple wave forms are measured under various operating conditions. Also, the parameters affected upon the flow and pressure ripple are investigated by the frequency analysis.

  • PDF

A Comparison of Separated and Combined Winding Concepts for Bearingless Centrifugal Pumps

  • Raggl, Klaus;Nussbaumer, Thomas;Kolar, Johann W.
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.243-258
    • /
    • 2009
  • Bearingless centrifugal pump systems are employed in the semiconductor, pharmaceutical and medical industries due to their facility for pumping high purity fluids without particle contamination. Two types of forces have to be generated by the stator units, namely bearing forces for achieving magnetic levitation, and drive forces for producing the needed pump torque. The generation of these forces requires bearing and drive windings, which can be realized as separate bearing and drive coils or as identical, combined coils on the stator claws. In this paper, a detailed comparison between these two winding concepts is undertaken, whereby the copper losses, the power electronics losses, and the achievable pump output pressure are evaluated for both concepts. For each criterion a ratio of improvement is calculated analytically which allows evaluation of the performance of the two winding concepts for any given pump operating point and design. Finally, also practical features such as control complexity, cabling effort and manufacturability are discussed and measurements on prototype systems are carried out to validate the considerations.

Optimization of Diode-pumped Cesium Vapor Laser Using Frequency Locked Pump Laser

  • Hong, Seongjin;Kong, Byungjoo;Lee, Yong Soo;Oh, Kyunghwan
    • Current Optics and Photonics
    • /
    • 제2권5호
    • /
    • pp.443-447
    • /
    • 2018
  • We propose a diode-pumped cesium laser using frequency locking of a pump laser that can effectively increase the maximum output power of the cesium laser. We simultaneously monitored the absorption spectrum of cesium and the laser output power, and the frequency of pump laser was locked at the center of the $D_2$ absorption line of the cesium atom to obtain an effective gain enhancement. Using this scheme, we have achieved output power increase of ~0.1 W compared to when frequency locking was not applied. Furthermore, by optimizing the temperature of the cesium cell and the reflectivity of the output coupler, we successfully achieved an output power of 1.4 W using the pump power of 2.9 W, providing a slope efficiency of 61.5% and optical-to-optical efficiency of 49%.

Performances of Erbium-Doped Fiber Amplifier Using 1530nm-Band Pump for Long Wavelength Multichannel Amplification

  • Choi, Bo-Hun;Chu, Moo-Jung;Park, Hyo-Hoon;Lee, Jong-Hyun
    • ETRI Journal
    • /
    • 제23권1호
    • /
    • pp.1-8
    • /
    • 2001
  • The performance of a long wavelength-band erbium-doped fiber amplifier (L-band EDFA) using 1530nm-band pumping has been studied. A 1530nm-band pump source is built using a tunable light source and two C-band EDFAs in cascaded configuration, which is able to deliver a maximum output power of 23dBm. Gain coefficient and noise figure (NF) of the L-band EDFA are measured for pump wavelengths between 1530nm and 1560nm. The gain coefficient with a 1545nm pump is more than twice as large as with a 1480nm pump. It indicates that the L-band EDFA consumes low power. The noise figure of 1530nm pump is 6.36dB at worst, which is 0.75dB higher than that of 1480nm pumped EDFA. The optimum pump wavelength range to obtain high gain and low NF in the 1530nm band appears to be between 1530nm and 1540nm. Gain spectra as a function of a pump wavelength have bandwidth of more than 10nm so that a broadband pump source can be used as 1530nm-band pump. The L-band EDFA is also tested for WDM signals. Flat Gain bandwidth is 32nm from 1571.5 to 1603.5nm within 1dB excursion at input signal of -10dBm/ch. These results demonstrate that 1530nm-band pump can be used as a new efficient pump source for L-band EDFAs.

  • PDF

대용량 전기추진시스템 설계를 위한 제어알고리즘 개발 (Control Algorithm Development for Design of Cooling System in High-power Propulsion Motor)

  • 오진석;정성영;공영경;빈재구;김한호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.195-201
    • /
    • 2010
  • 본 논문에서는 에너지 절감 기능을 포함한 대용량 전기추진모터용 냉각 시스템을 제안한다. 기존 시스템에서 청수, 해수 펌프 속도는 일정하며, 냉각수의 과냉각을 방지하기 위해 3-way valve으로 열교환기에 들어가는 유량을 제어하였다. 그리하여 외부 해수 온도의 변화와 관계없이 펌프의 전력 사용량은 일정하였다. 제안된 시스템은 외부 해수 온도에 따라 청수, 해수 펌프의 속도를 인버터로 제어하여 3-Way valve를 최소한으로 동작하도록 함으로써 에너지 손실을 방지한다. 본 연구에서는 제안한 시스템의 효율성을 확인하기 위해 시뮬레이션을 통하여 검증하였다.