DOI QR코드

DOI QR Code

Optimization of Diode-pumped Cesium Vapor Laser Using Frequency Locked Pump Laser

  • Hong, Seongjin (Institute of Physics and Applied Physics, Yonsei University) ;
  • Kong, Byungjoo (Institute of Physics and Applied Physics, Yonsei University) ;
  • Lee, Yong Soo (Institute of Physics and Applied Physics, Yonsei University) ;
  • Oh, Kyunghwan (Institute of Physics and Applied Physics, Yonsei University)
  • Received : 2018.07.12
  • Accepted : 2018.08.06
  • Published : 2018.10.25

Abstract

We propose a diode-pumped cesium laser using frequency locking of a pump laser that can effectively increase the maximum output power of the cesium laser. We simultaneously monitored the absorption spectrum of cesium and the laser output power, and the frequency of pump laser was locked at the center of the $D_2$ absorption line of the cesium atom to obtain an effective gain enhancement. Using this scheme, we have achieved output power increase of ~0.1 W compared to when frequency locking was not applied. Furthermore, by optimizing the temperature of the cesium cell and the reflectivity of the output coupler, we successfully achieved an output power of 1.4 W using the pump power of 2.9 W, providing a slope efficiency of 61.5% and optical-to-optical efficiency of 49%.

Keywords

References

  1. F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, "Review on diode-pumped alkali vapor laser," Optik - Int. J. Light Electron Opt. 124, 4353-4358 (2013). https://doi.org/10.1016/j.ijleo.2013.01.061
  2. W. F. Krupke, "Diode pumped alkali lasers (DPALs)-A review (rev1)," Prog. Quant. Electron. 36, 4-28 (2012). https://doi.org/10.1016/j.pquantelec.2011.09.001
  3. B. Zhdanov, T. Ehrenreich, and R. Knize, "Highly efficient optically pumped cesium vapor laser," Opt. Commun. 260, 696-698 (2006). https://doi.org/10.1016/j.optcom.2005.11.042
  4. B. V. Zhdanov and R. J. Knize, "Review of alkali laser research and development," Opt. Eng. 52, 021010 (2012). https://doi.org/10.1117/1.OE.52.2.021010
  5. J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, "Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I," Opt. Express 22, 13988-14003 (2014). https://doi.org/10.1364/OE.22.013988
  6. G. D. Hager and G. Perram, "A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping," Appl. Phys. B 101, 45-56 (2010). https://doi.org/10.1007/s00340-010-4050-6
  7. M. Birnbaum, A. W. Tucker, and C. L. Fincher, "Laser emission cross section of Nd: YAG at 1064 nm," J. Appl. Phys. 52, 1212-1215 (1981). https://doi.org/10.1063/1.329740
  8. G. A. Pitz, D. E. Wertepny, and G. P. Perram, "Pressure broadening and shift of the cesium D1 transition by the noble gases and $N_{2}$, $H_{2}$, HD, $D_{2}$, $CH_{4}$, $C_{2}H_{6}$, $CF_{4}$, and $^{3}He$," Phys. Rev. A 80, 062718 (2009). https://doi.org/10.1103/PhysRevA.80.062718
  9. Y. Wang and G. An, "Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source," Proc. SPIE 9521, 95211-95213 (2014).
  10. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, "DPAL: a new class of CW near-infrared high-power diode-pumped alkali (vapor) lasers," in Proc. Gas and Chemical Lasers, and Applications III (International Society for Optics and Photonics 2004), pp. 156-168.
  11. A. V. Bogachev, S. G. Garanin, A. Dudov, V. Eroshenko, S. M. Kulikov, G. Mikaelian, V. A. Panarin, V. Pautov, A. Rus, and S. A. Sukharev, "Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation," Quantum Electron. 42, 95 (2012). https://doi.org/10.1070/QE2012v042n02ABEH014734
  12. B. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. Knize, "Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode," Rev. Sci. Instrum. 86, 083104 (2015). https://doi.org/10.1063/1.4926883
  13. Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, "Approaches of output improvement for a cesium vapor laser pumped by a volume-Bragg-grating coupled laserdiode-array," Phys. Lett. A 360, 659-663 (2007). https://doi.org/10.1016/j.physleta.2006.08.080
  14. B. Young, F. Cruz, W. M. Itano, and J. Bergquist, "Visible lasers with subhertz linewidths," Phys. Rev. Lett. 82, 3799 (1999). https://doi.org/10.1103/PhysRevLett.82.3799
  15. M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill New York, 1995).
  16. C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1-20 (1991). https://doi.org/10.1063/1.1142305
  17. H. Gong, Z. Liu, Y. Zhou, and W. Zhang, "Extending the mode-hop-free tuning range of an external-cavity diode laser by synchronous tuning with mode matching," Appl. Opt. 53, 7878-7884 (2014). https://doi.org/10.1364/AO.53.007878
  18. M. De Labachelerie and G. Passedat, "Mode-hop suppression of Littrow grating-tuned lasers," Appl. Opt. 32, 269-274 (1993). https://doi.org/10.1364/AO.32.000269
  19. A. Liu and X. Zhang, "A review of MEMS external-cavity tunable lasers," J Micromech. Microeng. 17, R1 (2006).
  20. N. B. Jorgensen, D. Birkmose, K. Trelborg, L. Wacker, N. Winter, A. J. Hilliard, M. G. Bason, and J. J. Arlt, "A simple laser locking system based on a field-programmable gate array," Rev. Sci. Instrum. 87, 073106 (2016). https://doi.org/10.1063/1.4959545
  21. J. Karlander and D. Lovric, "Frequency locking of an external cavity diode laser," Lund Reports in Atomic Physics (2011).
  22. C. E. Webb and J. D. Jones, Handbook of Laser Technology and Applications: Laser design and laser systems (CRC Press, 2004).
  23. D. A. Steck, "Cesium D line data," Los Alamos National Laboratory (unpublished) 124 (2003).
  24. H. Moon, S.-E. Park, and E.-B. Kim, "Coherent multi-frequency optical source generation using a femto-second laser and its application for coherent population trapping," Opt. Express 15, 3265-3270 (2007). https://doi.org/10.1364/OE.15.003265
  25. F. Chen, F. Gao, Y. Xu, J.-J. Xie, D.-J. Li, and J. Guo, "Study on key operating parameters of diode-pumped Cs vapor laser," in Proc. XX International Symposium on High-Power Laser Systems and Applications 2014 (International Society for Optics and Photonics 2015), p. 92551W.
  26. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, "End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling," J. Opt. Soc. Am. B 21, 2151-2163 (2004). https://doi.org/10.1364/JOSAB.21.002151
  27. O. Svelto and D. C. Hanna, Principles of lasers (1998).
  28. B. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. Knize, "Laser diode array pumped continuous wave Rubidium vapor laser," Opt. Express 16, 748-751 (2008). https://doi.org/10.1364/OE.16.000748
  29. C. Alcock, V. Itkin, and M. Horrigan, "Vapour pressure equations for the metallic elements: 298-2500K," Can. Metall. Q. 23, 309-313 (1984). https://doi.org/10.1179/cmq.1984.23.3.309