• Title/Summary/Keyword: pump energy

Search Result 1,443, Processing Time 0.026 seconds

Analysis on the Performance Evaluation Trends of Heat Pumps and the Test Standards of a Geothermal Heat Pump in Korea (히트펌프 성능 평가 동향과 국내 지열원 히트펌프 성능 평가 규격 및 제도 분석)

  • Kang, Shin-Hyung;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.31-38
    • /
    • 2017
  • The heating and cooling air conditioning field has been increasing the problems of energy consumption and global warming in the world. A geothermal heat pump has been known as one of the highest efficient heating and cooling system. In this study, the analysis about the test standards of the geothermal heat pump of the Republic of Korea was executed. From the research, the following results were given. It is needed to address the domestic test standard for direct heat exchange geothermal heat pump. Water to air multi geothermal heat pump test standard was only developed in Korea. The test standard to calculate a seasonal energy efficiency ratio for cooling period and heat seasonal performance factor for heating period should be newly developed to estimate actual annual energy consumption and $CO_2$ emission.

Energy Efficient Design of a Jet Pump by Ensemble of Surrogates and Evolutionary Approach

  • Husain, Afzal;Sonawat, Arihant;Mohan, Sarath;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.265-276
    • /
    • 2016
  • Energy systems working coherently in different conditions may not have a specific design which can provide optimal performance. A system working for a longer period at lower efficiency implies higher energy consumption. In this effort, a methodology demonstrated by a jet pump design and optimization via numerical modeling for fluid dynamics and implementation of an evolutionary algorithm for the optimization shows a reduction in computational costs. The jet pump inherently has a low efficiency because of improper mixing of primary and secondary fluids, and multiple momentum and energy transfer phenomena associated with it. The high fidelity solutions were obtained through a validated numerical model to construct an approximate function through surrogate analysis. Pareto-optimal solutions for two objective functions, i.e., secondary fluid pressure head and primary fluid pressure-drop, were generated through a multi-objective genetic algorithm. For the jet pump geometry, a design space of several design variables was discretized using the Latin hypercube sampling method for the optimization. The performance analysis of the surrogate models shows that the combined surrogates perform better than a single surrogate and the optimized jet pump shows a higher performance. The approach can be implemented in other energy systems to find a better design.

Heating Performance Analysis of Building Integrated Geothermal System (건물일체형 지열히트펌프시스템의 난방 성능 분석)

  • Jin, Shangzhen;Lee, Jin-Uk;Kim, Tae-Yeon;Leigh, Seung-Bok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.206-210
    • /
    • 2012
  • Ground source heat pump is a central heating and cooling system that pumps heat to or from the ground. Building Integrated Geothermal system used in this experiment is one of the Ground Source Heat Pump Systems which utilize energy pile. The purpose of this study is to evaluate heating performance of the system. The building is a low-energy experiment apartment in Yonsei University Songdo Campus and the subject is one of the energy reduced houses in this apartment. In the experiment, indoor temperature, outdoor temperature and the inlet and outlet temperature of ground heat exchanger and subject model, were measured. Then the heat pump's Coefficient of performance(COP) of the heat pump was calculated. As a result, the COP of heat pump is 4-5. Although the depth of the ground heat exchanger in this experiment is shallower than usual heat exchanger, the result of heating performance of this system was good as well.

  • PDF

Drying Quality Characteristics of Shiitake Mushroom by Heat Pump Hot-air Dryer (열펌프 열풍건조기를 이용한 표고버섯의 건조 품질특성)

  • Shin, Eun-Jeong;Lee, Ho-Joon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.4
    • /
    • pp.22-27
    • /
    • 2015
  • Quality characteristics of Shiitake mushroom using two types of dryers, energy-efficient heat pump hot-air dryer and electric heater hot-air dryer were compared. Energy consumed during drying by heat pump hot-air dryer and electric heater hot-air dryer were 22.8 kWh and 28.9 kWh, respectively. Total polyphenol content of heat pump hot-air dryer and electric heater hot-air dryer after drying were $290.55{\pm}10.56ppm$ and $192.99{\pm}6.53ppm$, respectively. No differences were observed between dryers in reconstitution rate and browning ratio after drying. Also, there were no differences between dryers in color value and ${\Delta}E$ value after drying. Shiitake mushroom drying at $45^{\circ}C$ by heat pump hot-air dryer was proved to be more efficient in energy consumption than by electric heater hot-air dryer.

The hybrid heat pump with solar energy for heating (태양열이용 하이브리드 난방 열펌프시스템)

  • Kim, Ji-Young;Ko, Gwang-Soo;Kang, Byung-Chan;Park, Youn-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.173-178
    • /
    • 2005
  • Recently. we interested in renewable energy due to cost increase of the crude oil, etc. In this study solar assisted hybrid heat pump system that uses the solar heat and air as heat source analyzed by experimentally.'rho system could runs at dual mode. One is thermal storage mode of solar energy at day time and the other is heat pump mode with low temperature air as heat source at night time. In case of setting temperature over the limited range. high temperature water heated at the solar energy collecting tubes supplied to the storage tank. As results. it is founded that the heat pump performance Is higher than general heat pump which using the only air as a heat source. The developed system could be used as main healing equipment for the panel heating for the residential house.

  • PDF

Research of liquid-solid two phase flow in centrifugal pump with crystallization phenomenon

  • Liu, Dong;Wang, Ya-Yun;Wang, Ying-Ze;Wang, Chun-Lin;Yang, Min-Guan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.54-59
    • /
    • 2014
  • Particle Image Velocimetry combined with developed image processing method is adopted to study the liquid-solid two phase flow in the centrifugal pump impeller with crystallization phenomenon. The tracer particle is used to follow the liquid phase, which has the diameter between 8 to $12{\mu}m$. The crystal particle precipitates from the sodium sulfate solution does change the wavelength of the laser, and which has great laser scattering characteristics. The diameter of the crystal particle is larger than $20{\mu}m$. Through calculating the diameter of the particles in the image, the tracer particle and the crystal particle can be distinguished. By analyzing the experimental result, the following conclusion has been obtained. During the delay period, there is not any crystal particle and the pump performance has not been changed. As the crystallization process begins, the crystal nuclei appears from the supersaturation solution and grows larger with temperature decreasing, which has the tendency of moving towards the pressure side. The characteristics of liquid-solid two phase flow with crystallization phenomenon in the pump are obtained according to analysis of experimental results, and some guiding advices are presented to mitigate the crystallization phenomenon in pump impeller.

Theoretical Study on the Performance in a Solar-Geothermal Hybrid R22 Heat Pump During Winter Season according to Heat Source Temperature (열원의 온도변화에 따른 겨울철 태양열-지열 하이브리드 R22 열펌프의 성능에 관한 해석적 연구)

  • Kang, Byun;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.24-31
    • /
    • 2012
  • The Solar and geothermal energy have many advantage like low cost, non-toxic, and unlimited. But those the have very low energy efficiency. In this study, the theoretical study of performance in a sola-geothermal hybrid heat pump with operating conditions has carried out. As a result, as the solar radiation increases from 1 $MJ/m^2$ to 20 $MJ/m^2$, the heat pump operating time decreases by 19.5% from 18 times to 14.5 times and the heat pump heat decreases by 23%. Besides, the heating COP increases by 21.4% when the evaporator inlet temperature increases from $11^{\circ}C$ to $19^{\circ}C$. By adapting the geothermal system into a solar hybrid R22 heat pump, the system performance and reliability increases significantly for variable operating conditions during winter season.

A Study on the Geothermal Heat Pump System Performance Analysis according to Water Flow Rate Control of the Geothermal Water Circulation Pump (지열순환펌프 유량변화에 따른 지열히트펌프시스템의 에너지 성능 평가)

  • Jung, Young-Ju;Jo, Jae-Hun;Kim, Yong-Shik;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.103-109
    • /
    • 2014
  • It is important to control the amount of supply water flow rate at all kinds of HVAC systems in order to maintain IAQ and energy efficiency. The most of buildings installed geothermal heat pumps is using fixed water flow rate in spite of the excellent performance of geothermal heat pumps. Especially when the air-conditioning load is low, the flow rate control may be possible to save energy to operate. However, it is effective to apply the variable flow control system in order to reduce energy consumption. Therefore, the purpose of this study, change a water flow rate and improve the whole performance of the geothermal heat pump. Geothermal heat pump system is modeled after the selection of the applied building, by setting the flow rate control to be analyzed through a simulation of performance evaluation. Building energy saving according to the flow rate of the ground circulating water analyze quantitatively and to investigate the importance of the flow control.

A Experimental Study on the Ground Source and Rain Water Heat Source Heat Pump System in Apartment (공동주택 적용 지열 및 우수열원을 이용한 히트펌프의 실험적 연구)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Lee, Euy-Joon;Hyun, Myung-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.833-837
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. In this study, the operating performance of rain water and ground source heat pump system (RW-GSHP) was compared with GSHP during the heating test. Leaving load temperature(LLT) was $50^{\circ}C$, $53^{\circ}C$, $56^{\circ}C$, respectively and rain water tank temperature(RWT) was $13^{\circ}C$, $15^{\circ}C$, $17^{\circ}C$ in this heating test. The experiment was focused on comparison of the system operating performance depending on leaving load temperature (LLT) and rain water tank temperature (RWT). The results showed that rain water and ground source heat pump system (RW-GSHP) was higher heating performance and COPh than those of GSHP.

  • PDF

A Study on a Resorption Beat Pump Using Methanol-Glycerine (메탄올-글리세린을 이용한 재흡수 열펌프의 열역학적 모사 연구)

  • Min, Byong-Hun
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.284-290
    • /
    • 2006
  • The improvement of energy recovery is mandatory to decrease consumption of fossil fuels and to minimize negative impacts on the environment which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy saving in this respect. Absorption heat pump is a means to upgrade waste heat without addition of extra thermal energy. In this study, resorption heat pump for energy recovery has been investigated using methanol-glycerine. The simulated calculation of theoretical thermal efficiency was performed based on the thermodynamic properties of the working fluid over various operating conditions. The thermal efficiency of higher than 0.4 was obtained by raising industrial waste heat, $70{\sim}80^{\circ}C$, by $40^{\circ}C$ in this system.