• Title/Summary/Keyword: pump control

Search Result 1,139, Processing Time 0.023 seconds

Superheat Control of an Inverter-driven Heat Pump Using PI Control Algorithm

  • Park, Jong-Min;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.106-115
    • /
    • 2002
  • The performance of an inverter-driven water-to-water heat pump with an electronic expansion valve (EEV) was measured as a function of compressor frequency, load conditions, and EEV opening. Based on the test results, a controller using proportional integral (PI) feedback or PI feedforward algorithm was designed and tested to investigate capacity modulation and transient response control of the system. Although the relation between superheat and EEV opening of the heat pump showed nonlinear characteristics, a control gain obtained at the rated frequency was applicable to various operating conditions without causing large deviations. When the simple PI feedback control algorithm was applied, a large overshoot of superheat and wet compression were observed due to time delay effects of compressor frequency. However, applying PI feedforward control scheme yielded better system performance and higher reliability, compared to the PI feedback algorithm.

Controller Development of Booster Multi-Pump System (급수 가압 멀티 펌프 시스템의 컨트롤러 개발)

  • Lee, Sang-Kyun;Lee, Jae-Choon;Lee, Byeong-Hoon;Hwang, Min-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.382-384
    • /
    • 1996
  • This paper introduces the controller development of booster multi-pump system with constantly estimated control algorithm. Through analyzing by the experiment of optimal pressure with a certain flow rate. The larger pressure processing apparatus in microprocessor makes optimal water-supplying. This method is implemented with the only pure control algorithm without any other mechanical or circuitry apparatus. Also, Pump's life is lengthened by exchanging simple on, off and rotational inverter control. Optimal condition for pump is adjusted by the inverter control, and compact control panel helps the booster system install in real field.

  • PDF

Pressure Control of Electro-Hydraulic Variable Displacement Pump Using Genetic Algorithms (GA를 이용한 전기유압식 가변펌프의 압력제어)

  • 안경관;현장환;조용래;오범승
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.48-55
    • /
    • 2004
  • This study presents a genetic algorithm-based method fur optimizing control parameters in the pressure control of electro-hydraulic pump with variable displacement. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics and search the optimal control parameters maximizing a measure that evaluates the performance of a system. Four control gains of the PI-PD cascade controller for an electro-hydraulic pressure control system are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that genetic algorithm is an efficient scheme in optimizing control parameters of the pressure control of electro-hydraulic pump with variable displacement.

Methodology for Simulation of Trochoid Pump (트로코이드 펌프의 시뮬레이션 방법론)

  • Kim, Myung Sik;Chung, Won Jee;Jeong, Seung Won;Jeon, Ju Yeal
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.465-471
    • /
    • 2013
  • Flow rate control is the uppermost concern for a trochoid hydraulic pump. Cavitation within the flow field of the pump has the greatest effect on the flow control during high-speed pump rotation of approximately 3500~4000 RPM. In this paper, based on AMESim$^{(R)}$ and Solid Works$^{(R)}$, we will present a method to simulate cavitation by analyzing the control factors of a trochoid pump, including the hydraulic pressure change at the outlet, flow rate based on the rotation speed of the inner rotor, leakage through the gap between the outer and inner rotors, and discharging angle of the outlet. The proposed methodology of the [cavitation simulation will enable field engineers to more easily design trochoid pumps, and will allow more concrete control over the flow rate of the pump by realizing an analysis model similar to the actual product model.

Suction Detection in Left Ventricular Assist System: Data Fusion Approach

  • Park, Seongjin
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.368-375
    • /
    • 2003
  • Data fusion approach is investigated to avoid suction in the left ventricular assist system (LVAS) using a nonpulsatile pump. LVAS requires careful control of pump speed to support the heart while preventing suction in the left ventricle and providing proper cardiac output at adequate perfusion pressure to the body. Since the implanted sensors are usually unreliable for long-term use, a sensorless approach is adopted to detect suction. The pump model is developed to provide the load coefficient as a necessary signal to the data fusion system without the implanted sensors. The load coefficient of the pump mimics the pulsatility property of the actual pump flow and provides more comparable information than the pump flow after suction occurs. Four signals are generated from the load coefficient as inputs to the data fusion system for suction detection and a neural fuzzy method is implemented to construct the data fusion system. The data fusion approach has a good ability to classify suction status and it can also be used to design a controller for LVAS.

Laboratory Test on Total Flow Control for Ice Slurry System with Inverter Fed Motor Pump (인버터구동 모터펌프를 이용한 아이스 슬러리형 빙축열시스템 전유량제어 운전시험)

  • Choi, Byoung-Youn;Lee, Kyoung-Ho;Lee, Sang-Ryoul;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.260-265
    • /
    • 2001
  • This paper describes total flow control of an ice slurry system for pump energy saving. Similar turbo machinery has a characteristic that input power ratio is proportional to the three time of revolution speed ratio. To reduce the energy cost of brine pump in ice slurry storage systems, inverter is adapted instead of 3-way valve to control the speed of brine pump motor. One type of cooling load profile was used as driving load of the system, generated by a boiler and warm water storage tank. As results of the laboratory test, energy consumption and cost of the pump were reduced by 11.4%.

  • PDF

Implementation of Monitoring and Control System for Fire Engine Pump using the AJAX (AJAX를 이용한 소방엔진펌프의 모니터링과 제어 시스템 구현)

  • Yang, Oh;Lee, Heon-Guk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.40-45
    • /
    • 2016
  • In this paper, the fire engine pump is controlled and monitored by the AJAX (Asynchronous Javascript and Xml) in the web server. The embedded system with built-in system having a processor and a memory of high performance occurs many problems in transmitting the large amount of data in real time through the web server. The AJAX is different from HTML (Hyper Text Makeup Language) with java script technology and can make RIA (Rich Internet Application). It process the necessary data by using asynchronous and it take advantage of usefulness, accessibility, a fast response time. Using AJAX can build up web server with real time and monitoring that fire engine pump status, check processing pump memory in the event of fire, also remotely monitors can do. The web server system can control the fire engine pump as like the black box. The experimental results show the effectiveness and commercialize possibility.

On-site Performance Test and Simulation of a 10 RT Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, on-site performance test of an air source heat pump which has a rated capacity of 10 RT is carried out. Since indoor and outdoor air conditions can not be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. To estimate the performance of the heat pump for other conditions, the heat pump is modeled with a small number of characteristic parameters. The values of the parameters are determined from the few measurements measured on-site during steady operation. A simulation program is developed to calculate cooling capacity and power consumption at any other arbitrary operating conditions. The simulation results are in good agreement with the experiment. This study provides a method of an on-site performance diagnosis of an air source heat pump.

A Cloud-based Infusion Injector using Piezoelectric Micropump (피에조마이크로펌프를 이용한 클라우드기반 수액주입기)

  • Song, Young-Jin;Kang, Jung-Gu;Song, Geun-San
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.62-65
    • /
    • 2018
  • We will provides a micro-pump infusion injector with the cloud networking for remote control. The existing infusion injector with controlled manually have an uncomfortable to use it inconveniently. The proposed remote control infusion, infusion system enables the identification and control of injected amount through the IOT function on th WEB. The micro-pump used is a piezo electric pump manufactured by using MEMS technology, and the amount of charge is varied depending on the frequency magnitude through the micro-controller. The micro-pump can adjust the speed of the fluid depending on the frequency and can be from 0.1ml / min to 7ml / min when the frequency is from 3 to 110Hz.

Development of the HPM System to Improve Efficiency of the Hydraulic Excavator (유압식 굴삭기 효율 향상을 위한 HPM 시스템 개발)

  • Kwon, Yong Cheol;Lee, Kyung Sub;Kim, Sung Hun;Koo, Byoung Kook
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • The HPM (High-speed Power Matching) system is an electro-hydraulic control system. It directly controls the swash plate of the pump by selecting four-loop logic based on joystick signals, pump flow, and pressure signal to improve the efficiency and controllability of construction machines. In the NFC (Negative Flow Control) system, a typical pump control system using conventional open center type MCV, the loss is continuously generated by flow through the center bypass line even when the excavator is not in operation. Also, due to the slow response of the pump that indirectly controls the flow rate using the pressure regulator, peak pressure occurs at the start or stop of the operation. Conversely, the HPM system uses an MCV without center-by-pass flow path and the swash plate of a pump for the HPM is controlled by a high-speed proportional flow control valve. As a result, the HPM system minimizes energy loss in standby state of the excavator and enables peak pressure control through rapid electro-hydraulic control of a pump. In this paper, the concept of the HPM system algorithm is introduced and the hydraulic system efficiency is compared with the NFC system using the excavator SAT (System Analysis Tool).