• Title/Summary/Keyword: pumice powder

Search Result 6, Processing Time 0.018 seconds

Optimization of methylene blue adsorption by pumice powder

  • Cifci, Deniz Izlen;Meric, Sureyya
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2016
  • The main objective of this study is to evaluate adsorptive removal of Methylene Blue (MB) dye from aqueous solution using pumice powder. The effects of pH, adsorption time, agitation speed, adsorbent dose, and dye concentrations on dye adsorption were investigated. Process kinetics and isotherm model constants were determined accordingly. The results showed that adsorbent dose, dye concentration and agitation speed are the important parameters on dye adsorption and the removal of MB did not significantly change by varying pH. A total adsorption process time of 60 min was observed to be sufficient to effectively remove 50 mg/L MB concentration. The MB adsorption data obeyed both pseudo first order and second order kinetic models. Adsorption of MB by pumice fitted well both Langmiur and Freundlich isotherms ($R^2{\geq}0.9700$), except for 150 rpm agitation speed that system fitted only Langmiur isotherm. The results of this study emphasize that pumice powder can be used as a low cost and effective adsorbent for dye removal.

Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar

  • Etli, Serkan;Cemalgil, Selim;Onat, Onur
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.241-252
    • /
    • 2021
  • An experimental program was conducted to investigate the fresh properties, mechanical properties and durability characteristics of the self-compacting mortars (SCM) produced with pumice powder and Artificial Lightweight Fine Aggregate (aLWFA). aLWFA was produced by using fly ash. A total of 16 different mixtures were designed with a constant water-binder ratio of 0.37, in which natural sands were partially replaced with aLWFA and pumice powder at different volume fractions of 5%, 10% and 15%. The artificial lightweight aggregates used in this study were manufactured through cold bonding pelletisation of 90% of class-F fly ash and 10% of Portland cement in a tilted pan with an ambient temperature and moisture content. Flowability tests were conducted on the fresh mortar mixtures beforehand, to determine the self-compacting characteristics on the basis of EFNARC. To determine the conformity of the fresh mortar characteristics with the standards, mini-slump and mini-V-funnel tests were carried out. Hardened state tests were conducted after 7, 28 and 56 days to determine the flexural strength and axial compressive strength respectively. Durability, sorptivity, permeability and density tests were conducted at the end of 28 days of curing time. The test results showed that the pumice powder replacement improved both the fresh state and the hardened state characteristics of the mortar and the optimum mixture ratio was determined as 15%, considering other studies in the literature. In the aLWFA mixtures used, the mechanical and durability characteristics of the modified compositions were very close to the control mixture. It is concluded in this study that mixtures with pumice powder replacement eliminated the negative effects of the aLWFA in the mortars and made a positive contribution.

Influence of ground pumice powder on the bond behavior of reinforcement and mechanical properties of self-compacting mortars

  • Benli, Ahmet;Karatas, Mehmet;Sastim, M. Veysel
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.283-290
    • /
    • 2017
  • The aim of this study is to investigate the effect of the bond strength of self-compacting mortars (SCMS) produced from ground pumice powder (GPP) as a mineral additive. In this scope, six series of mortars including control mix were prepared that consist of 7%, 12%, 17%, 22% and 27% of ground pumice powder by weight of cement. A total of 54 specimens of $40{\times}40{\times}160mm$ were produced and cured at the age of 3, 28 and 90-day for compressive and tensile strength tests and 18 specimens of $150{\times}150{\times}150mm$ mortar were prepared and cured at 28 days for bond strength tests. Flexural tensile strength and compressive strength of $40{\times}40{\times}160mm$ specimens were measured at the curing age of 7, 28 and 90-day. Mini V-funnel flow time and mini slump flow diameter tests were also conducted to obtain rheological properties. As a result of the study, it was observed that the SCMs containing 12% of GPP has the highest bond strength as compared to control and GPP mortars. Compressive strength slightly increased up to 12% of GPP.

Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete

  • Shariati, Mahdi;Rafie, Shervin;Zandi, Yousef;Fooladvand, Rouhollah;Gharehaghaj, Behnam;Mehrabi, Peyman;Shariat, Ali;Trung, Nguyen Thoi;Salih, Musab N.A.;Poi-Ngian, Shek
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.225-237
    • /
    • 2019
  • Although applying self-consolidating concrete (SCC) in many modern structures is an inevitable fact, the high consumption of cement in its mixing designs has led to increased production costs and adverse environmental effects. In order to find economically viable sources with environmentally friendly features, natural pozzolan pumice and blast furnace slag in 10-50% of replacement binary designs have been investigated for experiments on the properties of fresh concrete, mechanical properties, and durability. As a natural pozzolan, pumice does not require advanced equipment to prepare for consumption and only needs to be powdered. Pumice has been the main focus of this research because of simple preparation. Also to validate the results, in addition to the control specimens of each design, fly ash as a known powder has been evaluated. Moreover, ternary mixes of pumice and silica fume were investigated to enhance the obtained results of binary mixes. It was concluded that pumice and slag powders indicated favorable performance in the high percentage of replacement.

Ability of the Natural Abrasives Recovered from Sludge (재활용 천연광물 연마재의 연마성능)

  • Cho, Sung-Baek;Seo, Myeong-Deok;Cho, Keon-Joon;Lee, Su-Jeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.353-358
    • /
    • 2009
  • The ability of natural abrasives which were recovered from CRT glass polishing process was evaluated. Comparing the center line average roughness values of a glass polished with new pumice (Ra = $0.039{\mu}m$) and with new garnet (Ra = $0.031{\mu}m$), the glass surface polished with the recycled pumice and the garnet had less pits on the surface with smaller Ra values (Ra = $0.025{\mu}m$ for recycled pumice and Ra = 0.029 for recycled garnet). Recycled rouge contains amorphous glass fragments so that it should be used as a cement replacement rather than recycle into an abrasive. Nnatural abrasives, pumice and garnet powder, which are used in CRT glass polishing process can be recycled into abrasives so that it can help to minimize costs and environmental impact from the production of abrasives and the disposal of waste sludge.

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)