• 제목/요약/키워드: pulsed-laser deposition

검색결과 639건 처리시간 0.027초

펄스 레이저 증착법으로 성장된 실리콘 박막의 어닐링 온도 변화에 따른 발광 특성연구 (Effect of Annealing Temperature on the Luminescence of Si Nanocrystallites Thin Films Prepared by Pulsed Laser Deposition)

  • 김종훈;전경아;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제15권1호
    • /
    • pp.75-78
    • /
    • 2002
  • Si thin films on p-type (100) Si substrate have been prepared by a pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was 1 Torr. After deposition, Si thin film has been annealed again at 400-840$^{\circ}C$ in nitrogen ambient. Strong blue photoluminescence (PL) have been observed at room temperature. We report the PL properties of Si thin films with the variation of the annealing temperature.

PLD를 이용한 ZnO 박막의 발광에 관한 연구 (Photoluminescence characteristics of ZnO thin films by Pulsed laser deposition)

  • 김재홍;이경철;이천
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.1030-1033
    • /
    • 2002
  • ZnO thin films on (100)p-type silicon substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YGA laser with a wavelength of 266nm. The influence of the deposition parameters, such as oxygen pressure, substrate temperature and laser energy density variation on the properties of the grown film, was studied. The experiments were performed for substrate temperatures in the range of $200{\sim}500^{\circ}C$ and oxygen pressure in the range of $10^{-2}{\sim}10^2mTorr$. We investigated the structural, morphological and optical properties of ZnO thin films using X-ray diffraction(XRD), atomic force microscopy(AFM), photoluminescence(PL).

  • PDF

Effect of Deposition Rate on the Property of ZnO Thin Films Deposited by Pulsed Laser Deposition

  • Kim Jae-Won;Kang Hong-Seong;Lee Sang-Yeol
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.98-100
    • /
    • 2006
  • ZnO thin films were deposited at different repetition rates of 5 Hz and 10 Hz by pulsed laser deposition. X-ray diffraction (XRD) full widths at half maximum (FWHMs) of (002) ZnO peak in ZnO thin film deposited at 5 Hz and 10 Hz was 0.22 and $0.26^{\circ}$, respectively. The grain size of ZnO thin film deposited at 5 Hz was larger than that of 10 Hz. The variation of repetition rates did not have an effect on the optical property of ZnO thin films. The degradation of the crystalline quality and surface morphology in ZnO thin film deposited at 10 Hz resulted from supersaturation effect by decrease of time interval between a ZnO particle arriving on a substrate by laser shot and a ZnO particle arriving on a substrate by next laser shot.

PLD증착 변수에 따른 II-VI족 화합물 ZnO 반도체 박막의 발광 특성 연구 (Correlation Between Deposition Parameters and Photoluminescence of ZnO Semiconducting Thin Films by Pulsed laser Deposition)

  • 배상혁;윤일구;서대식;명재민;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제14권3호
    • /
    • pp.246-250
    • /
    • 2001
  • ZnO thin films for light emission device have been deposited on sapphire and silicon substrates by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of355 nm. In order to investigate the emission properties of ZnO thin films, Pl measurements with an Ar ion laser a light source using an excitation wavelength of 351 nm and a power of 100 mW are used. All spectra were taken at room temperature by using a grating spectrometer and a photomultiplier detector. ZnO exhibited Pl bands centers around 390, 510 and 640 nm, labeled near ultra-violet(UV), green and orange bands. Structural properties of ZnO thin films are analyzed with X-ray diffraction(XRD).

  • PDF

PLD로 제작한 Si 박막에서의 광학적 특성분석 (Optical properties of Si thin films grown by PLD)

  • 배상혁;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.532-534
    • /
    • 2000
  • Si thin films on p-type (100) Si substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was varied from 1 to 3 Torr. After deposition, Si thin film has been annealed again at nitrogen ambient. Strong violet-indigo photoluminescence have been observed from Si thin film annealed in nitrogen ambient gas. As increasing environmental gas pressure, weak green and red emissions from annealed Si thin films also observed by photoluminescence.

  • PDF

펄스 레이저 증착법을 이용한 유기 박막의 제작 (Fabrication of Organic Thin Films by Pulsed Laser Deposition)

  • 박상무;이붕주
    • 한국진공학회지
    • /
    • 제17권5호
    • /
    • pp.455-460
    • /
    • 2008
  • 최근까지 유기박막의 제조에 있어서 진공 증착 혹은 스핀코팅법의 대체방법으로 펄스 레이져 증착법 (PLD: Pulsed laser deposition)에 많은 관심이 되고 있는 실정이다. 본 논문에서는 유기발광소자(OLED)의 제작을 위해 $Alq_3$(aluminato-tris-8-hydroxyquinolate)와 TPD의 유기물을 질소($N_2$)분위기 상태에서 KrF($\lambda$=278 nm) 엑시머 레이저를 이용한 PLD법으로 증착하였고, 증착공정변화에 따른 증착된 박막의 분자 및 광학적 특성의 효과를 PL과 FT-IR등을 이용하여 평가하였다.

나노초 펄스 레이저를 이용한 발광폴리머 패터닝 (Selective Ablation of Emissive Polymer Using Nanosecond-pulsed Laser)

  • 고정수;오부국;김두영;이재영;이승기;정수화;홍순국
    • 한국레이저가공학회지
    • /
    • 제14권3호
    • /
    • pp.7-11
    • /
    • 2011
  • As an active emission display using emissive polymer has had much attention recently, needs for a selective patterning of emissive layer for those displays have been increased abruptly. Therefore, the various laser sources in terms of its wavelength has been used for laser direct patterning. In this work, the feasibility of those processes is examined using numerical analysis and the experimental investigation. A sample has multi-layered structure, emissive polymer on aluminum which is deposited on a glass substrate. Key factors for optimizing the laser patterning of the emissive polymer are considered into the control of ablation products, large-sized particle, and the choice of the appropriate wavelength for minimizing the heat affected zone and the remnant layer.

  • PDF

펄스 레이저 증착법을 이용한 실리콘 박막의 어닐링 온도 변화에 따른 발광 특성연구 (Effect of Annealing Temperature on the Luminescence of Si Nanocrystallites Thin Flms Fabricated by Pulsed Laser Deposilion)

  • 김종훈;전경아;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.127-130
    • /
    • 2001
  • Si thin films on p-type (100) Si substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was 1 Torr. After deposition, Si thin film has been annealed again at 400-840$^{\circ}C$ in nitrogen ambient. Strong blue photoluminescence (PL) have been observed at room temperature. We report the PL properties of Si thin films depending on the variation of the annealing temperature.

  • PDF

PLD를 이용한 ZnO 박막의 후열처리에 관한 연구 (Effects of Post-Annealing Treatment of ZnO Thin Films by Pulsed Laser)

  • 이천;김재홍
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권3호
    • /
    • pp.103-108
    • /
    • 2005
  • ZnO thin films on (001) sapphire substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YAG laser with a wavelength of 266nm. Before post-annealing treatment in the oxygen ambient, the experiment of the deposition of ZnO thin films has been performed for substrate temperatures in the range of $300\~450^{\circ}C$ and oxygen gas flow rate of $100\~700\;sccm$. In order to investigate the effect of post-annealing treatment of ZnO thin films, films have been annealed at various temperatures after deposition. After post-annealing treatment in the oxygen ambient, the structural properties of ZnO thin films were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the optical properties of the ZnO were characterized by photoluminescence(PL).

펄스레이저 증착법에 의한 실리콘 나노결정 형성 메커니즘 (Formation mechanism of silicon nanocrystals fabricated by pulsed laser deposition)

  • 김종훈;전경아;김건희;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.162-164
    • /
    • 2004
  • Nanocrystalline silicon(nc-Si) thin films on the silicon substrates have been prepared by pulsed laser deposition(PLD). The optical and structural properties of films have been investigated depending on deposition temperature, annealing, and oxidation process. When the deposition temperature increased, photoluminescence(PL) intensity abruptly decreased and peaks showed red shift. Annealing process could reduce the number of defect centers. Oxidation had a considerable effect upon the formation and isolation of the nanocrystals. These results indicate that the formation mechanism of Si nanocrystals grown by PLD can be explained by three steps of growth, passivating defect centers, and isolation, sequentially.

  • PDF