• 제목/요약/키워드: pulsed wire evaporation (PWE)

검색결과 23건 처리시간 0.017초

전기폭발법에 의한 CU/CUO 나노분말의 제조 및 분말특성 (Synthesis and Characteristics of CU/CUO Nanopowders by Pulsed Wire Evaporativn(PWE) Method)

  • 맹덕영;이창규;이남희;박중학;김흥회;이은구
    • 한국재료학회지
    • /
    • 제12권12호
    • /
    • pp.941-946
    • /
    • 2002
  • Both Cu and Cu-oxide nanopowders have great potential as conductive paste, solid lubricant, effective catalysts and super conducting materials because of their unique properties compared with those of commercial micro-sized ones. In this study, Cu and Cu-oxide nanopowders were prepared by Pulsed Wire Evaporation (PWE) method which has been very useful for producing nanometer-sized metal, alloy and ceramic powders. In this process, the metal wire is explosively converted into ultrafine particles under high electric pulse current (between $10^4$ and $10^{ 6}$ $A/mm^2$) within a micro second time. To prevent full oxidations of Cu powder, the surface of powder has been slightly passivated with thin CuO layer. X-ray diffraction analysis has shown that pure Cu nanopowders were obtained at $N_2$ atmosphere. As the oxygen partial pressure increased in $N_2$ atmosphere, the gradual phase transformation occurred from Cu to $Cu_2$O and finally CuO nanopowders. The spherical Cu nanopowders had a uniform size distribution of about 100nm in diameter. The Cu-oxide nanopowders were less than 70nm with sphere-like shape and their mean particle size was 54nm. Smaller size of Cu-oxide nanopowders compared with that of the Cu nanopowders results from the secondary explosion of Cu nanopowders at oxygen atmosphere. Thin passivated oxygen layer on the Cu surface has been proved by XPS and HRPD.

전기폭발법에 의한 Ni 및 Ni-Cu 나노 금속 분말의 제조와 자기적 특성연구 (Study of Synthesis and Magnetic Properties of Ni and Ni-Cu Nano Metal Powders Prepared by the Pulsed Wire Evaporation(PWE) Method)

  • 박중학;엄영랑;김경호;김흥희;이창규
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.83-88
    • /
    • 2003
  • Nanocrystalline materials of Ni and Ni-Cu alloy have been synthesized by the pulsed wire evaporation (PWE) method and these abnormal magnetic properties in the magnetic ordered state have been characterized using both VSM and SQUID in the range of high and low magnetic fields. Ni and Ni-Cu particles with an average size of 20 to 80 nm were found to influence magnetic hysterisis behavior and the results of powder neutron diffraction patterns and saturation magnetization curves are shown to indicate the absence of the NiO phase. The shifted hysterisis loop and irreversibility of the magnetization curve in the high field region were observed in the magnetic-ordered state of both Ni and Ni-Cu. The virgin magnetization curve for Ni slightly spillover on the limited hysterisis loop ($\pm$20kOe). This irreversibility in the high field of 50 kOe can be explained by non-col-linear behavior and the existence of the metastable states of the magnetization at the surface layer (or core) of the particle in the applied magnetic field. Immiscible alloy of Cu-Ni was also found to show irreversibility having two different magnetic phases.

액상/기상중 전기선 폭발법을 이용한 은 나노유체의 제조 및 특성평가에 관한 연구 (Synthesis and Characterization of Silver Nanofluid Using Pulsed Wire Evaporation Method in Liquid-Gas Mixture)

  • 김창규;이경자;이창규
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.468-472
    • /
    • 2009
  • The silver nanofluids were synthesized by the pulsed wire evaporation (PWE) method in a liquid-gas mixture. The size and microstructure of nanoparticles in the deionized water were investigated by a particle size analyzer (PSA), transmission electron microscope (TEM), and scanning electron microscope (SEM). Also, the synthesized nanofluids were investigated in order to assess the stability of dispersion of nanofluid by the zetapotential analyzer and dispersion stability analyzer. The results showed that the spherical silver nanoparticle formed in the deionized water and mean particle size was about 50 nm. Also, when explosion times were in the range of 20$\sim$200 times, the absolute value of zeta potential was less than -27 mV and the dispersion stability characteristic of low concentration silver nanofluid was better than the high concentration silver nanofluid by turbiscan.

전기선폭발법에 의해 카본 코팅된 Cu 나노분말의 제조 및 특성 연구 (Fabrication and Characterization of Carbon-Coated Cu Nanopowders by Pulsed Wire Evaporation Method)

  • 이희민;박중학;홍성모;엄영랑;이창규
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.243-248
    • /
    • 2009
  • Carbon-coated Cu nanopowders with core/shell structure have been successfully fabricated by pulsed wire evaporation (PWE) method, in which a mixed gas of Ar/$CH_4$ (10 vol.%) was used as an ambient gas. The characterization of the samples was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and high resolution transmission electron microscope (HRTEM). It was found that the nanoparticles show a spherical morphology with the size ranging of 10-40 nm and are covered with graphite layers of 2-4 nm. When oxygen-passivated Cu nanopowders were annealed under flowing argon gas (600 and 800$^{\circ}C$), the crystallinity of $Cu_2O$ phase and the particle size gradually increased. On the other hand, carbon-coated Cu nanopowders remained similar to as-prepared case with no additional oxide or carbide phases even after the annealing, indicating that the metal nanoparticles are well protected by the carbon-coating layers.

전기폭발법에 의해 제조된 Ni 나노분말의 분급 특성 (Characterization of Classification of Synthesized Ni Nanopowders by Pulsed Wire Evaporation Method)

  • 박중학;김건홍;이동진;홍순직
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.389-394
    • /
    • 2017
  • Ni wires with a diameter and length of 0.4 and 100 mm, respectively, and a purity of 99.9% are electrically exploded at 25 cycles per minute. The Ni nanopowders are successfully synthesized by a pulsed wire evaporation (PWE) method, in which Ar gas is used as the ambient gas. The characterization of the nanopowders is carried out using X-ray diffraction (XRD) and a high-resolution transmission electronmicroscope (HRTEM). The Ni nanopowders are classified for a multilayer ceramic condenser (MLCC) application using a type two Air-Centrifugal classifier (model: CNI, MP-250). The characterization of the classified Ni nanopowders are carried out using a scanning electron microscope (SEM) and particle size analysis (PSA) to observe the distribution and minimum classification point (minimum cutting point) of the nanopowders.

전기폭발법에 의해 제조된 자성 Fe2O3 나노 분말의 자기적 특성연구 (Study of Magnetic Fe2O3 Nano-particles Synthesized by Pulsed Wire Evaporation (PWE) Method)

  • 엄영랑;김흥회;이창규
    • 한국분말재료학회지
    • /
    • 제9권5호
    • /
    • pp.341-345
    • /
    • 2002
  • Nanoparticles of $Fe_2O_3$ with a mean particle size of 4-30 nm have been prepared by a pulsed wire evaporation method, and its structural and magnetic properties were studied by SQUID magnetometer and Mossbauer spectroscopy. From the main peak intensity of XRD and absorption rate of Mossbauer spectrum, the amounts of $\gamma-Fe_2O_3$ and $\alpha-Fe_2O_3$ in as-prepared sample are about 70% and 30%, respectively. The coercivity (53 Oe) and the saturation magnetization (14 emu/g) are about 20% of those of the bulk $\gamma-Fe_2O_3$. The low value of coercivity and saturation magnetization indicate that the $\gamma-Fe_2O_3$ phase nearly shows the spin glass-like behavior. Analysis of the set of Mossbauer spectrum indicates a distribution of magnetic hyperfine fields due to the particle size distribution yielding 20 nm of average particle size. The magnetic hyperfine parameters are consistent with values reported of bulk $\gamma-Fe_2O_3$ and $alpha-Fe_2O_3$. A quadrupole line on the center of spectrum represents of superparamagnetic phase of $\gamma-Fe_2O_3$ with a mean particle size of 7 nm or below.

전기 폭발법에 의해 제조된 Cu-Ni 나노 분말의 윤활성 향상 (Tribological Properties of Cu-Ni Alloy Nanopowders Synthesized by Pulsed Wire Evaporation (PWE) Method)

  • 오정석;박중학;김흥회;이창규
    • 한국분말재료학회지
    • /
    • 제11권5호
    • /
    • pp.376-382
    • /
    • 2004
  • Nanoscale Cu-Ni alloy nanopowders have been produced by a pulsed wire evaporation method in an inert gas. The effect of Cu-Ni alloy nanopowders as additives to motor oil on the tribological properties was studied at room temperature. The worn surfaces were characterized by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Cu-Ni alloy nanopowders as additives lowered coefficient of friction and wear rate. It was found that a copper containing layer on the worn surface was formed, and deposited layers of the metal cladding acted as lubricant on the worn surface, reducing the friction coefficient. It was clearly demonstrated that Cu-Ni alloy nanopowders as additives are able to restore the worn surface and to preserve the friction surfaces from wear.

알루미늄 나노 분말의 수화반응에 의한 수산화알루미늄 형성 (Formation of an Aluminum Hydroxide Fiber by a Hydrolysis of Aluminum Nano Powder)

  • 이근희;오영화;이창규;김흥회
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.172-176
    • /
    • 2005
  • Formation of aluminum hydroxide by a hydrolytic reaction of nano aluminum powder synthesized by a pulsed wire evaporation (PWE) method has been studied. The type and morphology of the hydroxides were investigated with various initial temperatures and pHs. The nano fibrous boehmite (AlOOH) was formed predominantly over $40^{\circ}C$ of the hydrolytic temperature in acid solution, while the bayerite $(Al(OH)_3)$ was formed predominantly below $30^{\circ}C$ in alkali solution with a faceted crystalline structure. As a result the boehmite showed a much larger specific surface area (SSA) than that of bayerite. The highest SSA of the boehmite was about $409\;m^2/g$.

Thermally Stabilized Porous Nickel Support of Palladium Based Alloy Membrane for High Temperature Hydrogen Separation

  • Ryi, Shin-Kun;Park, Jong-Soo;Cho, Sung-Ho;Hwang, Kyong-Ran;Kim, Sung-Hyun
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.133-139
    • /
    • 2007
  • Nickel powder was coated with aluminum nitrate solution to increase the thermal stability of a porous nickel support and control the nickel content in the Pd-Cu-Ni ternary alloyed membrane. Raw nickel powder and alumina coated nickel powder were uniaxialy pressed by home made press with metal cylindrical mold. Though the used nickel powder prepared by pulsed wire evaporation (PWE) method has a good thermal stability, the porous nickel support was too much sintered and the pores of porous nickel support was plugged at high temperature (over $800^{\circ}C$) making it not suitable for the porous support of a palladium based composite membrane. In order to overcome this problem, the nickel powder was coated by alumina and alumina modified porous nickel support resists up to $1000^{\circ}C$ without pore destruction. Furthermore, the compositions of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow could be controlled by not only Cu-reflow temperature but also alumina coating amount. SEM analysis and mercury porosimeter analysis evidenced that the alumina coated on the surface of nickel powder interrupted nickel sintering.

전기선폭발법을 이용한 core/shell 구조 Ag/C 나노 입자의 제조 및 열처리조건에 따른 특성 (Synthesis of Core/shell Structured Ag/C Nano Particles and Properties on Annealing Conditions)

  • 전수형;엄영랑;이창규
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.295-301
    • /
    • 2010
  • Multi shell graphite coated Ag nano particles with core/shell structure were successfully synthesized by pulsed wire evaporation (PWE) method. Ar and $CH_4$ (10 vol.%) gases were mixed in chamber, which played a role of carrier gas and reaction gas, respectively. Graphite layers on the surface of silver nano particles were coated indiscretely. However, the graphite layers are detached, when the particles are heated up to $250^{\circ}C$ in the air atmosphere. In contrast, the graphite coated layer was stable under Ar and $N_2$ atmosphere, though the core/shell structured particles were heated up to $800^{\circ}C$. The presence of graphite coated layer prevent agglomeration of nanoparticles during heat treatment. The dispersion stability of the carbon coated Ag nanoparticles was higher than those of pure Ag nanoparticles.