• Title/Summary/Keyword: pulsed power systems

Search Result 64, Processing Time 0.027 seconds

Operational Characteristics of a Dry Electrostatic Precipitator for Removal of Particles from Oxy Fuel Combustion (순산소 연소 배출 입자 제거용 건식 전기집진장치 운전 특성)

  • Kim, Hak-Joon;Han, Bang-Woo;Oh, Won-Seok;Hwang, Gyu-Dong;Kim, Yong-Jin;Hong, Jeong-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • In a test duct with closed configuration, particle removal performance of an edge-plate type electrostatic precipitator (ESP) was evaluated at a high flow rate in $CO_2$ rich environments by changing gap distances between collection plates, concentrations of $CO_2$, particle sizes, types of electrodes, and types of power supplies. At the same experimental conditions, collection efficiency of particles with the mean particle size, 300 nm, decreased as the gap distance and $CO_2$ concentration increased because of low electrostatic force and low discharged current. In addition, as the particle size increased, the efficiency increased because of high charging rate of the large particles. With the electrode type which has higher surface area of a discharging plate and with the power supply which applied 25 kHz-pulsed DC voltages, the removal efficiency was high even in rich $CO_2$ condition due to high electrostatic force at the same power consumption.

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Influence of Electrical Aging on Space Charge Dynamics of Oil-Impregnated Paper Insulation under AC-DC Combined Voltages

  • Wang, Yan;Li, Jian;Wu, Sicheng;Sun, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1512-1519
    • /
    • 2013
  • Oil-impregnated paper is a major type of insulation used in oil-filled converter transformers for both traditional and new energy systems. This paper presents and analyzes the results of the experiment conducted on the electrical aging of oil-impregnated paper under AC-DC combined voltages using the pulsed electro-acoustic (PEA) technique. The formation and dynamics of space charge affected the performance of insulation material. The electrical aged oil-paper insulation was obtained through electrical aged experiments under the voltages. Based on the PEA technique, measurements were carried out when the oil-paper insulation system was subjected to different stressing and aging times. The space charge dynamics in the bulk of the oil-paper insulation system with different aging times were measured and analyzed. Characteristic parameters such as the total charge injection amount, the total charges of fast moving and slow moving, and the distortion factor of electric field were calculated and discussed. Results show that the longer electrical aging time, the more charges trapped in the bulk of aging sample. It leads to larger distortion factor of electric field in the bulk of aging samples and accelerate degradation of oil-paper insulation under AC-DC combined voltages.

Investigation of 0.5 MJ superconducting energy storage system by acoustic emission method.

  • Miklyaev, S.M.;Shevchenko, S.A.;Surin, M.I.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.961-965
    • /
    • 1998
  • The rapid development of small-scale (1-10 MJ) Superconducting Magnetic Energy Storage Systems (SMES) can be explained by real perspective of practical implementation of these devices in electro power nets. However the serious problem of all high mechanically stressed superconducting coils-problem of training and degradation (decreasing) of operating current still exists. Moreover for SMES systems this problems is more dangerous because of pulsed origin of mechanical stresses-one of the major sources of local heat disturbances in superconducting coils. We investigated acoustic emission (AE) phenomenon on model and 0.5 MJ SMES coils taking into account close correlation of AE and local heat disturbances. Two-coils 0.5 MJ SMES system was developed, manufactured and tested at Russian Research Center in the frames of cooperation with Korean Electrical Engineering Company (KEPCO) [1]. The two-coil SMES operates with the stored energy transmitted between coils in the course of a single cycle with 2 seconds energy transfer time. Maximum operating current 1.55 kA corresponds to 0.5 MF in each coil. The Nb-Ti-based conductor was designed and used for SMES manufacturing. It represents transposed cable made of Nb-Ti strands in copper matrix, several cooper strands and several stainless steel strands. The coils are wound onto fiberglass cylindrical bobbins. To make AE event information more useful a real time instrumentation system was used. Two main measured and computer processed AE parameters were considered: the energy of AE events (E) and the accumulated energy of AE events (E ). Influence of current value in 0.5 MJ coils on E and E was studied. The sensors were installed onto the bobbin and the external surface of magnets. Three levels of initial current were examined: 600A, 1000A, 2450 A. An extraordinary strong dependence of the current level on E and E was observed. The specific features of AE from model coils, operated in sinusoidal vibration current changing mode were investigated. Three current frequency modes were examined: 0.012 Hz, 0.03 Hz and 0.12 Hz. In all modes maximum amplitude 1200 A was realized.

  • PDF

Smart Surface Texturing Implant Stem for Enhancement of Osteoblast Cell Biocompatibility (골육세포 성장 촉진을 위한 스마트 써피스 텍스처링 임플란트 스템 제작 기술)

  • Kim, Kyunghan;Lee, Jaehoon;Park, Jongkweon;Jin, Sukwon;Choi, Wanhae;Lee, Hongjin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.375-380
    • /
    • 2014
  • To enhance biocompatibility between the orthopedic implant stem and obsteoblast cells, bone-forming cells, micro-size holes are patterned in Ti plate surface. Initially, the house built laser power stabilization system is applied to the laser micro patterning machine to convince repeatable result. Various pulse widths are irradiated Ti plate and relationship between diameters of patterned holes and pulsed width is derived. Effect of multi pulse is observed and optimal pulse number is considered to avoid heat affected zone. After MG-63 osbeoblast cells are cultured, micro patterned Ti plates are compared with control plates. In SEM image, cells are well aligned and aggregation is observed in both 60, and $100{\mu}m$ patterned plates. Finally, free form surface stem model is prepared to test micro hole patterning.

Progress in R&D of coated conductor in M-PACC project

  • Izumi, T.;Ibi, A.;Nakaoka, K.;Taneda, T.;Yoshida, T.;Takagi, Y.;Nakamura, T.;Machi, T.;Katayama, K.;Sakai, N.;Yoshizumi, M.;Koizumi, T.;Kimura, K.;Kato, T.;Kiss, T.;Shiohara, Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • The five-year national project in Japan for R&D of coated conductors and applications, named as the Materials and Power Applications of Coated Conductors (M-PACC) project, was finished at the end of FY2013. The project consists of four sub-themes as cable, transformer, SMES and coated conductors. In the theme of coated conductors, the fabrication process had been developed to satisfy the requirements from the applications such as in-field $I_c$ performance, low AC loss in the long tapes etc. Through the project, the remarkable progress was achieved as follows; a high in-field minimum $I_c$ value over 54A/cm-width under 3T at 77K was realized in a 200m long EuBCO tape with artificial pinning centers of $BaHfO_3$ by the pulsed laser deposition (PLD) technique on the IBAD template. On the other hand, the AC loss reduction was confirmed in the tapes fabricated by both PLD and the metal organic deposition (MOD) techniques by scribing 100m tapes into 10-filamments. Additionally, the mechanism of the delamination phenomenon was systematically investigated and the strength was improved by eliminating the origins of the weak points in the films. Through the development, all targeted goals were accomplished and the several results were appreciated as a world champion data.

Experimental Verification of Multipactor Sensitivity for S-band Diplexer (S 대역 Diplexer에 대한 Multipactor 민감도 시험)

  • Choi, Seung-Woon;Kim, Day-Young;Kwon, Ki-Ho;Lee, Yun-Ki
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.83-91
    • /
    • 2007
  • An experimental verification of multipactor(MP) discharge for S-band diplexer as a sample DUT for space application by an in-house MP test facility is proposed. The designed diplexer having two BPFs for Rx and Tx is applied to a design of five pole inter-digital cavity type band pass filter with chebyshev response, it has 2.7 % bandwidth centered at 2.232 and 2.055 GHz for Rx, Tx, respectively. To avoid the MP discharge, the accurate design and analysis methods based on 3D EM field analysis are considered. The proposed in-house MP test facility consists of a phase detecting system using a doubly balanced mixer as a simple, low cost and real time MP test method compared with results of previously well-known MP detection systems as cross reference methods. The calculated MP threshold RF input power is 43.13 dBm. The measured one is 43 dBm and 44 dBm for CW, pulsed mode test, respectively.

  • PDF

Fabrication of nickel nanoparticles-embedded carbon particles by solution plasma in waste vegetable oil

  • Pansuwan, Gun;Phuksawattanachai, Surayouth;Kerdthip, Kraiphum;Sungworawongpana, Nathas;Nounjeen, Sarun;Anantachaisilp, Suranan;Kang, Jun;Panomsuwan, Gasidit;Ueno, Tomonaga;Saito, Nagahiro;Pootawang, Panuphong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.894-898
    • /
    • 2016
  • Solution plasma is a unique method which provides a direct discharge in solutions. It is one of the promising techniques for various applications including the synthesis of metallic/non-metallic nanomaterials, decomposition of organic compounds, and the removal of microorganism. In the context of nanomaterial syntheses, solution plasma has been utilized to produce carbon nanoparticles and metallic-carbon nanoparticle systems. The main purpose of this study was to synthesize nickel nanoparticles embedded in a matrix of carbon particles by solution plasma in one-step using waste vegetable oil as the carbon source. The experimental setup was done by simply connecting a bipolar pulsed power generator to nickel electrodes, which were submerged in the waste vegetable oil. Black powders of the nickel nanoparticles-embedded carbon (NiNPs/Carbon) particles were successfully obtained after discharging for 90 min. The morphology of the synthesized NiNPs/Carbon was investigated by a scanning electron microscope, which revealed a good dispersion of NiNPs in the carbon-particle matrix. The X-ray diffraction of NiNPs/Carbon clearly showed the co-existence of crystalline Ni nanostructures and amorphous carbon. The crystallite size of NiNPs (through the Ni (111) diffraction plane), as calculated by the Scherrer equation was found to be 64 nm. In addition, the catalytic activity of NiNPs/Carbon was evaluated by cyclic voltammetry in an acid solution. It was found that NiNPs/Carbon did not show a significant catalytic activity in the acid solution. Although this work might not be helpful in enhancing the activity of the fuel cell catalysts, it is expected to find application in other processes such as the CO conversion (by oxidation) and cyclization of organic compounds.

Fabrication of Coated Conductor by Continuous PVD Methods (연속 공정 PVD 방법에 의한 Coated Conductor 제조)

  • Ko, Rock-Kil;Chung, Jun-Ki;Kim, Ho-Sup;Ha, Hong-Soo;Shi, Dongqi;Song, Kyu-Jeong;Park, Chan;Yoo, Sang-Im;Moon, Seung-Hyun;Kim, Young-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1241-1245
    • /
    • 2004
  • Continuous physical vapor deposition (PVD) method is one of many processes to fabricate long length coated conductor which is required for successful large-scale application of superconducting power devices. Three film deposition systems (pulsed laser deposition, sputtering, and evaporation) equipped with reel-to-reel(R2R) metal tape moving apparatus were installed and used to deposit multi-layer oxide thin films. Both RABiTS and IBAD texture templates are used. IBAD template consists of CeO$_2$(PLD)/YSZ(IBAD) on stainless steel(SS) metal tape, and RABiTS template has the structure of CeO$_2$/YSZ/Y$_2$O$_3$ which was continuously deposited on Ni-alloy tape using R$_2$R evaporation and DC reactive sputtering in a deposition system designed to do both processes. 0.4 m-long coated conductor with Ic(77 K) of 34 A/cm was fabricated using RABiTS template. 0.5 m and 1.1 m-long coated conductor with Ic(77 K) of 41 A/cm and 26 A/cm were fabricated using IBAD template.

Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3 (Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구)

  • Chang, Ik-Whang;Ji, Sang-Hoon;Paek, Jun-Yeol;Lee, Yoon-Ho;Park, Tae-Hyun;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.931-935
    • /
    • 2012
  • In this study, we fabricate and investigate low-temperature solid oxide fuel cells with a ceramic substrate/porous metal/ceramic/porous metal structure. To realize low-temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss. Yttrium-doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350-nm-thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1-${\mu}m$-thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200-nm-thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806 V, and the maximum power density is 11.9 mW/$cm^2$ at $350^{\circ}C$. Even though a fully dense electrolyte is deposited via PLD, a cross-sectional transmission electron microscopy (TEM) image reveals many voids and defects.