• 제목/요약/키워드: pulse-width control

검색결과 805건 처리시간 0.025초

RESISTANCE ESTIMATION OF A PWM-DRIVEN SOLENOID

  • Jung, H.G.;Hwang, J.Y.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.249-258
    • /
    • 2007
  • This paper proposes a method that can be used for the resistance estimation of a PWM (Pulse Width Modulation)-driven solenoid. By using estimated solenoid resistance, the PWM duty ratio was compensated to be proportional to the solenoid current. The proposed method was developed for use with EHB (Electro-Hydraulic Braking) systems, which are essential features of the regenerative braking system of many electric vehicles. Because the HU (Hydraulic Unit) of most EHB systems performs not only ABS/TCS/ESP (Electronic Stability Program) functions but also service braking function, the possible duration of continuous solenoid driving is so long that the generated heat can drastically change the level of solenoid resistance. The current model of the PWM-driven solenoid is further developed in this paper; from this a new resistance equation is derived. This resistance equation is solved by using an iterative method known as the FPT (fixed point theorem). Furthermore, by taking the average of the resistance estimates, it was possible to successfully eliminate the effect of measurement noise factors. Simulation results showed that the proposed method contained a sufficient pass-band in the frequency response. Experimental results also showed that adaptive solenoid driving which incorporates resistance estimations is able to maintain a linear relationship between the PWM duty ratio and the solenoid current in spite of a wide variety of ambient temperatures and continuous driving.

High Efficiency Active Clamp Forward Converter with Synchronous Switch Controlled ZVS Operation

  • Lee Sung-Sae;Choi Seong-Wook;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.131-138
    • /
    • 2006
  • An active clamp ZVS PWM forward converter using a secondary synchronous switch control is proposed in this paper. The proposed converter is suitable for low-voltage and high-current applications. The structure of the proposed converter is the same as a conventional active clamp forward converter. However, since it controls the secondary synchronous switch to build up the primary current during a very short period of time, the ZVS operation is easily achieved without any additional conduction losses of magnetizing current in the transformer and clamp circuit. Furthermore, there are no additional circuits required for the ZVS operation of power switches. Therefore, the proposed converter can achieve high efficiency with low EMI noise, resulting from soft switching without any additional conduction losses, and shows high power dens~ty, a result of high efficiency, and requires no additional components. The operational principle and design example are presented. Experimental results demonstrate that the proposed converter can achieve an excellent ZVS performance throughout all load conditions and demonstrates significant improvement in efficiency for the 100W (5V, 20A) prototype converter.

A New Random SPWM Technique for AC-AC Converter-Based WECS

  • Singh, Navdeep;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.939-950
    • /
    • 2015
  • A single-stage AC-AC converter has been designed for a wind energy conversion system (WECS) that eliminates multistage operation and DC-link filter elements, thus resolving size, weight, and reliability issues. A simple switching strategy is used to control the switches that changes the variable-frequency AC output of an electrical generator to a constant-frequency supply to feed into a distributed electrical load/grid. In addition, a modified random sinusoidal pulse width modulation (RSPWM) technique has been developed for the designed converter to make the overall system more efficient by increasing generating power capacity and reducing the effects of inter-harmonics and sub-harmonics generated in the WECS. The technique uses carrier and reference waves of variable switching frequency to calculate the firing angles of the switches of the converter so that the three-phase output voltage of the converter is very close to a sine wave with reduced THD. A comparison of the performance of the proposed RSPWM technique with the conventional SPWM demonstrated that the power generated by a turbine in the proposed approximately increased by 5% to 10% and THD reduces by 40% both in voltage and current with respect to conventional SPWM.

단상 PV 인버터용 온라인 데드타임 보상기 연구 (A New On-Line Dead-Time Compensator for Single-Phase PV Inverter)

  • 부우충기엔;이상회;차한주
    • 전력전자학회논문지
    • /
    • 제17권5호
    • /
    • pp.409-415
    • /
    • 2012
  • This paper presents a new software-based on-line dead-time compensation technique for a single-phase grid-connected photovoltaic (PV) inverter system. To prevent a short circuit in the inverter arms, a switching delay time must be inserted in the pulse width modulation (PWM) signals. This causes the dead-time effect, which degrades the system performance around zero-crossing point of the output current. To reduce the dead-time effect around the zero-crossing point of grid current, a harmonic mitigation of grid current is used as an additional part of the synchronous frame current control scheme. This additional task mitigates the harmonic components caused by the dead-time from the grid current. Simulation and experimental results are shown to verify the effectiveness of the proposed dead-time compensation method in the single-phase grid-connected inverter system.

Three-Level NPC-Based Dual Active Bridge Converter의 도통손실 절감을 위한 새로운 스위칭 방법 (A Control Method to Improve Power Conversion Efficiency of Three-level NPC-Based Dual Active Bridge Converter)

  • 이준영;최현준;김주용;정지훈
    • 전력전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.150-158
    • /
    • 2017
  • This study proposes a new pulse-width modulation switching pattern for the low conduction loss of a three-level neutral point clamped (NPC)-based dual-active bridge (DAB) converter. The operational principle for a bidirectional power conversion is a phase-shift modulation. The conventional switching method of the three-level NPC-based DAB converter shows a symmetric switching pattern. This method has a disadvantage of high root-mean-square (RMS) value of the coupling inductor current, which leads to high conduction loss. The proposed switching method shows an asymmetrical pattern, which can reduce the RMS value of the inductor current with lower conduction loss than that of the conventional method. The performance of the proposed asymmetrical switching method is theoretically analyzed and practically verified using simulation and experiment.

A Phase Current Reconstruction Technique Using a Single Current Sensor for Interleaved Three-phase Bidirectional Converters

  • Lee, Young-Jin;Cho, Younghoon;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.905-914
    • /
    • 2016
  • This paper proposes a new phase current reconstruction technique for interleaved three-phase bidirectional dc-dc converters using a single current sensor. In the proposed current reconstruction algorithm, a single current sensor is employed at the dc-link, and the dc-link current information is sampled at either the peak or valley point of the pulse-width modulation (PWM) carriers regularly. From the obtained current information, all phase currents are reconstructed in a single PWM cycle. After that, the digital current controller is applied to achieve current balancing in each phase. Compare to the previous multiple current sensor method, the proposed strategy reduces the number of the current sensors in the interleaved three-phase bidirectional converter as well as reducing potential current sensing error caused by non-ideal characteristics of the multiple current sensors. The effectiveness of the proposed method is verified from the experiments based on a 3kW three-phase bidirectional converter prototype for the automotive battery charging application.

메디컬 링 라이트의 개발 (Development of Ring Right for Medical Purpose)

  • 천민우;박용필
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.766-767
    • /
    • 2010
  • 최근 주목받고 있는 광원인 LED를 이용하여 국소 환부 부위의 무영 촬영을 위해 의료용 링 라이트를 개발하였다. 개발된 링 라이트는 PWM 방식을 이용하여 다양한 광량의 조절이 가능하도록 설계하였으며 각각의 LED를 독립적으로 제어함으로 색온도 및 연색성의 조절이 가능하다. 또한 환부의 연속 촬영을 위한 지속광과 순간적인 촬영을 위한 플래시 모드의 동작이 가능 하다. 본 연구에서는 환부의 순간적인 무영촬영을 위해 구성된 인터페이스 회로를 이용하여 순간적인 플래시 기능의 응답속도를 확인하였다.

  • PDF

스마트기기용 강압형 DC-DC 변환기 특성해석 (Analysis of a Buck DC-DC Converter for Smart Electronic Applications)

  • 강보경;나재훈;송한정
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.373-379
    • /
    • 2019
  • Nowadays, the IoT portable electronic devices have become more useful and diverse, so they require various supply voltage levels to operate. This paper presents a DC-DC buck converter with pulse width modulation (PWM) for portable electronic devices. The proposed step-down DC-DC converter consists of passive elements such as capacitors, inductors, and resistors and an integrated chip (IC) for signal control to reduce power consumption and improves ripple voltage with the resolution. The proposed DC-DC converter is simulated and analyzed in PSPICE circuit design platform, and implemented on the prototype PCB board with a Texas Instruments LM5165 IC. The proposed buck converter is showed 92.6% of peak efficiency including a load current range of 4-10 mA, 3.29 mV of the voltage ripple at 5 V output voltage for the supply voltage 12 V. Measured and Simulated power efficiency are made good agreement with each other.

FPGA를 활용한 SVPWM방식의 정현파 BLDC 모터 구동 로직 설계 및 구현 (Design and implementation of BLDC motor drive logic using SVPWM method with FPGA)

  • 전병찬;박원기;이성철;이현영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.652-654
    • /
    • 2016
  • 본 논문에서는 FPGA를 활용하여 SVPWM (Space Vector Pulse Width Modulation)방식의 정현파 BLDC 모터 구동 로직을 설계 및 구현하였다. Hall sensor를 이용한 BLDC 모터 구동 회로는 정현파 PWM 생성회로, 데드타임 회로 및 리드 앵글 생성 회로 등으로 구성 된다. 특히 PWM 생성 회로는 SVPWM방식을 이용하여 기존 정현파 PWM 대비 선형구간이 15.5% 증가된다. 설계한 회로는 VHDL을 이용하여 모의실험 하였으며 Xilinx Spartan-6 FPGA보드를 통하여 회로의 동작 및 성능을 검증하였다. 검증 결과 모터구동 전류의 THD (Total Harmonic Distortion)은 19.32% 로 기존 정현파 구동 회로 대비 우수한 특성을 보였으며 회전자 분해능은 $1.6^{\circ}$로 정밀 제어가 가능함을 확인하였다.

  • PDF

더블 게이트 박막 트랜지스터를 활용한 Micro LED 디스플레이 화소 회로 설계 (Design of Pixel Circuit of Micro LED Display with Double Gate Thin Film Transistors)

  • 김태수;전재홍
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.50-55
    • /
    • 2022
  • Due to the wavelength shift problem of micro LED caused by the change of current density, the active matrix driving pixel circuit that is used in OLED cannot be applied to micro LED displays. Therefore, we need a gray scale method based on modulation of duration time of light emission. In this study, we propose the PWM-controlled micro LED pixel circuit based on CMOS thin film transistors (TFTs). By adopting CMOS inverter structure, we can reduce the number of storage capacitors from the circuit and make the operating speed of the circuit faster. Most of all, our circuit is designed to make operating speed of PWM circuit faster by adopting feedback effect through double gate TFT structure. As a result, it takes about 4.7ns to turn on the LED and about 5.6ns to turn it off. This operating time is short enough to avoid the color distortion and help the precise control of the gray scale.