• Title/Summary/Keyword: pulse sensor array

Search Result 37, Processing Time 0.03 seconds

Interference Effects on the Thickness of a Pulse Pressure Sensor Array Coated with Silicone (맥 센서 어레이(array)의 실리콘(silicone) 코팅 두께에 따른 센서 간 간섭효과)

  • Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Pulse diagnosis is one of the representative diagnostic methods in Oriental medicine. In this study, a pulse pressure sensor array coated with silicone, which includes 6 piezo-resistive sensors and 1 thermistor, is fabricated for pulse measurement. It is necessary to coat the pulse sensor array with silicone to avoid the fracture or damage of pressure sensors when the sensor is in contact with the skin and a constant pressure is applied. However, the silicone coating on the pulse sensor array can cause signal interference among the sensors in the pulse sensor array. The interference number (IN), a calculation for expressing the degree of interference among channels, is changed according to the silicone thickness on the pulse sensor array. The IN is increased by a thick silicone coating, but the fabrication error, an important index for the mass production of the sensor array, is reduced by the thickness of the silicone coating. We propose that the thickness of the silicone on the pulse sensor array is an important consideration for the performance of the fabricated sensor and manufacturing repeatability.

Signal Change and Compensation of Pulse Pressure Sensor Array Due to Wrist Surface Temperature (손목 피부 온도에 의한 맥센서 어레이(array)의 신호 변동 및 보정)

  • Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • A pressure sensor in pulse measurement system is a core component for precisely measuring the pulse waveform of radial artery. A pulse sensor signal that measures the pulse wave in contact with the skin is affected by the temperature difference between the ambient temperature and skin surface. In this study, we found experimentally that the signal changes of the pressure sensors and a temperature sensor were caused by the temperature of the wrist surface while the pressure sensor was contacted on the skin surface for measuring pulse wave. To observe the signal change of the pulse sensor caused by temperature increase on sensor surface, Peltier device that can be kept at a set temperature was used. As the temperature of Peltier device was kept at $35^{\circ}C$ (the maximum wrist temperature), the device was put on the pulse sensor surface. The temperature and pressure signals were obtained simultaneously from a temperature sensor and six pressure sensors embedded in the pulse sensor. As a result of signal analysis, the sensor pressure was decreased during temperature increase of pulse sensor surface. In addition, the signal difference ratio of pressure and temperature sensors with respect to thickness of cover layer in pulse sensor was increased exponentially. Therefore, the signal of pressure sensor was modified by the compensation equation derived by the temperature sensor signal. We suggested that the thickness of cover layer in pulse sensor should be designed considering the skin surface temperature.

Pressure Sensor Packaging for Non-invasive Pulse Wave Measurement (비침습적 맥파 측정을 위한 압력센서 패키징에 관한 연구)

  • Kim, Eun-Geun;Nam, Ki-Chang;Heo, Hyun;Huh, Young
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1978.1_1979.1
    • /
    • 2009
  • In this paper, we have proposed and demonstrated a tonometry sensor array for measuring arterial pulse pressure. A sensor module consists of 7 piezoresistive pressure sensor array. Wire-bonded connection was provided between silicon chip and lead frame. PDMS(poly-dimethylsiloxane) was coated on the sensor array to protect fragile sensor while faithfully transmitting the pressure of radial artery to the sensor. Tonometric pulse pressure can be measured by this packaged sensor array that provides the pressure value versus the output voltage.

  • PDF

Optimal Design and Analysis of a Medical Imaging Ultrasonic Array Sensor (의료 영상진단용 초음파 어레이 센서의 최적설계 및 특성해석)

  • Kim, Hoe-Yong;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.263-270
    • /
    • 2008
  • The performance of an ultrasonic array sensor is determined by the properties of constituent materials and the effects of many structural parameters. In this study, with the finite element method, variation of the performances of an ultrasonic array sensor was analyzed in relation to its structural variables. Based on the analysis result, the structure of the ultrasonic array sensor was optimized to provide the highest sensitivity while satisfying such requirements as fractional bandwidth, center frequency and -20 dB pulse length. The optimization was carried out with the SQP-PD method for a target function composed of the ultrasonic array sensor performance. The optimized ultrasonic array sensor satisfied all the required specifications to be applicable to medical imaging diagnosis. The design technology in this paper can be utilized for other ultrasonic array sensors of a similar structure.

Characteristic of the pulse wave in hypertension using pulse analyzer with array piezoresistive sensor (어레이 압저항 센서 장착 맥진기의 고혈압 맥파 특성)

  • Choi, Yong-Seok;Kim, Kyung-Yo;Hwang, Seung-Yeon;Kim, Jong-Yeol;Lee, Si-Woo;Kim, Hyun-Hee;Joo, Jong-Cheon
    • Korean Journal of Acupuncture
    • /
    • v.24 no.3
    • /
    • pp.105-116
    • /
    • 2007
  • Objectives : This study was performed to determine whether a pulse analyzer using array piezoresistive sensor was useful to characterize the variables of pulse wave of hypertentive patients (HT) , compared with those of healthy subjects. Methods : One hundred twenty two subjects participated in this study. Sixty nine subjects had hypertension and fifty three subjects had no specific history or disease associated with hypertension. We used automatic pulse analyzer with array piezoreslstive sensor. Results : Calibrated in Chon, no specific differences was between HT group and the healthy group. Calibrated in Gwan. sum of pulse pressure (SPP) of HT group was higher than that of the healthy group. Calibrated in Cheek, mean of height of main peak (Mm) and height of main peak (h1) of HT group were higher than those of the healthy group. Conclusions : Pulse analyzer was useful to determine the risk degree or development possibility of hypertension.

  • PDF

Precise Measurement Method of Radial Artery Pulse Waveform using Robotic Applanation Tonometry Sensor (로보틱 토노메트리 센서를 이용한 요골 동맥 파형 정밀 측정 방법)

  • Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • In this paper, a novel measurement method of radial artery pulse waveform using robotic applanation tonometry (RAT) was present to reduce the errors by the pressing direction of the vessel. The RAT consisted of an array of pressure sensors and 2-axis tilt sensor, which was attached to the universal joint with a linear spring and five-DOF robotic manipulator with a one-axis force sensor. Using the RAT mechanism, the pulse sensor could be manipulated to perpendicularly pressurize the radial artery. A pilot experimental result showed that the proposed mechanism could find the optimal pressurization angles of the pulse sensor within ${\pm}3^{\circ}$standard deviations. Coefficient values of variation of maximum pulse peaks extracted from the pulse waveforms were 4.692, 6.994, and 11.039 % for three channels with the highest magnitudes. It is expected that the proposed method can be helpful to develop more precise tonometry system measuring the pulse waveform on the radial artery.

A New Measurement Method of a Radial Pulse Wave Using Multiple Hall Array Devices

  • Lee, Sang-Suk;An, Myoung-Chone;Ahn, Sung-Hoon
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.132-136
    • /
    • 2009
  • This study investigated the radial pulse waveform obtained by a medical pulsimeter sensor. A pulse-sensing part array consisting of multiple Hall devices was located over a skin-contacting part with a hard magnetic material. The periodic movement of the magnetic material of the skin-contacting part affected the magnetic field in the pulse-sensing part array and was detected by multiple Hall devices. The analysis of a radial pulse waveform that is measured noninvasively by detecting the changes of the magnetic field can be used to develop a new diagnostic algorithm of oriental medical apparatus.

Simulation Analysis of Spatially Arterial Pulse Wave using Two-dimensional Array Sensors with Magnetoresistive Device (2차원 배열 자기저항소자를 이용한 공간 맥진파형의 전산모사 분석)

  • Kim, M.S.;Kim, S.W.;Kim, G.W.;Lee, S.J.;Lee, S.G.;Lee, H.S.;Park, D.H.;Hwang, D.G.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.307-310
    • /
    • 2005
  • To get the spatial feature of arterial pulse, we designed spatial pulse diagnostic apparatus (SPDA) using a 2-dimensional magnetoresistive sensor array. The magnetic field distribution fur magnet may was simulated using finite element method. We recognized that the field distribution of parallel magnet mays was more sensitive and uniformed than that of perpendicular one. Also the spatial displacements of magnet array were agreed with the output signal of magnetic tunnel junction (MTJ) sensor array.

A Study on the Acoustic Baffle to Reduce Ghost Target According to Structure behind Cylindrical Array Sensor (원통형 배열센서 후면 구조물에 의해 발생하는 허위 표적 감소를 위한 음향 배플 연구)

  • Seo, Young Soo;Kim, Dong Hyun;Kim, Jin Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.440-446
    • /
    • 2015
  • Acoustic signal is emitted from a vessel and received by a cylindrical array sensor at some distance from the vessel. Acoustic signal is the source for a cylindrical array sensor which is designed to detect the acoustic signal. Cylindrical array sensors seldom have an ideal hydrodynamic shape and are not sufficiently robust to survive without some protection and they are normally housed in a sonar dome. Reflected signals by some structure inside a sonar dome make unwanted signals. Therefore, an acoustic baffle is used to minimize unwanted signals. The performance of the acoustic baffles can be determined from the acoustic numerical analysis at the design stage. In this study, finite element method was used to analyze the acoustic field around the cylindrical array sensor and baffle effects. The baffle performance can be defined the echo reduction. To show the baffle performance, the specimens were made for pulse tube test and echo reductions were measured during the test. In this paper, the effect of echo reduction of the acoustic baffle was discussed.

Clinical Study on the Sasang Constitutional Pulse Using Array Piezoresistive Sensor (어레이 압저항 센서를 활용한 체질맥 임상연구)

  • Lee, Si-Woo;Joo, Jong-Cheon;Kim, Kyung-Yo;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.1
    • /
    • pp.118-131
    • /
    • 2006
  • 1. Objective Pulse diagnosis is generally applied to Traditional Oriental Medicine but not to Sasang Constitution diagnosis. Recently new pulse analyzer using array piezoresistive sensor and multi-channel robot arm developed. It reflects Oriental Medical Doctors' diagnostic processes, and its reproducibility test was done at Korea Institute of Oriental Medicine. We performed this study to set parameters diagnosing Sasang Constitution. 2. Methods One hundred thirty three subjects participated in this study. They are healty and approved this study. Before being tested with pulse analyzer, they had interview with Sasang Constitution Specialist to diagnose their Sasang Constitution. We established some useful parameters from parameters of pulse analyzer according to the Original Texts of Oriental Medicine and clinical experiences to analyze with clinical data of this study. 3. Results (I) There is a significant difference in pre-dicrotic notch time among all parameters of pulse analyzer in Sasang Constitution groups(P=0.047). (2) There is a significant difference in maximum pulse pressure in 33 to 48 year Sasang Constitution groups(P=0.010). (3) There is a significant difference in frequency width in 17 to 32 year Sasang Constitution groups(P=0.002). (4) There is a significant difference in CFS value in groups which OMD diagnoses; Floating & Sinking pulse(P=0.020). (5) There is a significant difference in pulse rate in groups which OMD diagnoses; Rapid & Slow pulse(P=0.000). (6) There is a significant difference in maximum pulse pressure in groups which OMD diagnoses; Deficient & Solid pulse(P=0.000). 4. Conclusions Analyzing parameters in each Sasang Constitution group, we found it shows significant difference in maximum pulse pressure and corresponding tendency in coefficient of floating & sinking pulse with theories of Sasang Consti-tutional Medicine. As we accumulate more clinical data, we will establish algorithm to diagnose Sasang Constitution using a pulse analyzer.

  • PDF