• Title/Summary/Keyword: pulse arrival time

Search Result 50, Processing Time 0.025 seconds

Pulse Position Determination using Adaptive Threshold Detector (Adaptive Threshold Detector를 이용한 펄스 위치 계산)

  • Chagn, Jae-won;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • MLAT which is an independent cooperative surveillance system is applied to increase the positon resoultin of secondary survelliance radar. MLAT uses the hyperboic or hyperboloid position mesurement algorithm. Central processing unit of MLAT calculates target position using time difference of arrival (TDOA) which can be solved from time of arrival (TOA) information of each receivers (at least 4 receivers). To increase position resolution of MLAT which use TDOA, TOA which is transfer time from tranmitter to receiver shold be calculated with precision time resolution in receiver. This paper explained the MLAT system briefly and explained ATD which is one of means of calcuating pulse position. ATD is applied to solve the deviation of pulse position due to different amplitude of signals in mulitiple receivers. In this paper, to analysis the performance of ATD, the simulation result of LAS and CDS was compared with the simulation result of basic threshold method.

Estimation of baroreflex sensitivity using pulse arrival time rather than systolic blood pressure measurement

  • Lee, Jong-Shill;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • Baroreflex sensitivity (BRS) is a parameter of the cardiovascular system that is reflected in changes in pulse interval (PD and systolic blood pressure (SBP). BRS contains information about how the autonomic nervous system regulates hemodynamic homeostasis. Normally the beat-to-beat SBP measurement and the pulse interval measured from the electrocardiogram (ECG) are required to estimate the BRS. We investigated the possibility of measuring BRS in the absence of a beat-to-beat SBP measurement device. Pulse arrival time (PAT), defined as the time between the R-peak of the ECG and a single characteristic point on the pulse wave recorded from any arterial location was measured by photoplethysmography. By comparing the BRS obtained from conventional measurements with our method during controlled breathing, we confirmed again that PAT and SBP are closely correlated, with a correlation coefficient of -0.82 to -0.95. The coherence between SBP and PI at a respiration frequency of 0.07-0.12 Hz was similar to the coherence between PAT and PI. Although the ranges and units of measurement are different (ms/mmHg vs. ms/ms) for BRS measured conventionally and by our method, the correlation is very strong. Following further investigation under various conditions, BRS can be reliably estimated without the inconvenient and expensive beat-to-beat SBP measurement.

Estimation of Non- Invasive Blood Pressure Using Peripheral Plethysmograph (말초혈관 혈류 측정을 이용한 비관혈적 혈압 추정법에 대한 연구)

  • Jeong In-cheol;Shin Tae-min;Yoon Hyung-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.504-509
    • /
    • 2005
  • This paper presents a new method for obtaining the noninvasive and unrestrained blood pressure readings noninvasively and unrestrainedly using based on reflected wave arrival time(RAT) in the volume of pulse. Since this new method employs only volume pulse, is more rapider and simpler than the method using pulse transit time(PTT) because it only employs the volume of pulse. Blood pressure, PTT and RAT were acquired from 15 healthy subjects. Each subjects were performed forty trials of each measurement. As a result of those trials, the mean error between oscillometric and RAT measurements for systolic blood pressure was $4.55\pm5.64mmHg$. This result showed quite equal with the mean error between oscillometric and PPT measurf:ments, $4.22\pm5.30mmHg$, However, it was not obtained a satisfactory result in the relativity of oscillometric to both RAT and PPT measurements for diastolic blood pressure because of personal difference. To conclude, the method of systolic blood pressure estimation noninvasively and unrestrainedly using by RAT may be used as the method by PTT. Nevertheless, additional studies would be necessary for the RAT/PTT estimation of diastolic blood Pressure measurement.

A New Method for Unconstrained Pulse Arrival Time (PAT) Measurement on a Chair

  • Kim Ko-Keun;Chee Young-Joon;Lim Yong-Gyu;Choi Jin-Wook;Park Kwang-Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.83-88
    • /
    • 2006
  • A new method of measuring pulse arrival time (PAT), which is usually used for the estimation of systolic blood pressure, in an unconstrained manner using a chair, is proposed. The capacitive-coupled ECG (CC-ECG) measurement system and the air cushion with balancing tubes system were used for unconstrained PAT measurement. Firstly, the correlation between the standard PAT (S-PAT) from the photoplethysmography (PPG) and the PAT measured in an unconstrained manner (U-PAT) was evaluated. It was observed that U-PAT, which is the time delay from the R-peak of ECG to the steepest decent point of air cushion pressure wave, is significantly correlated with the S-PAT. Secondly, systolic blood pressure (SBP) measured by the radial tonometer is compared to the U-PAT. The ten-beat averaged U-PAT removed respiration effects and demonstrated a high intra-subject correlation with SBP in all participants. Finally, the tonometry SBP was estimated from these U-PAT values for one participant intermittently during half a day.

Non-intrusive measurement of pulse arrival time and Estimation of Systolic Blood Pressure (무구속적 맥파 전달 시간의 측정을 통한 혈압 추정)

  • Chee, Young-Joon;Park, Kwang-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.489-492
    • /
    • 2005
  • Even though the blood pressure is one of the most widely used index for the healthcare monitoring of hypertensive and normotensive persons, there is no non-intrusive measurement method which is commercialized until now. Pulse Arrival Time (PAT) is known that it has close relation with the systolic blood pressure (SBP) and arterial stiffness. In this study, SBP estimation methods by non-intrusive measurement of PAT are suggested. For the unconstrained measurement of PAT, the first method used the electrically non contact electrocardiogram (ENC-ECG) technique and the reflective type of Photoplethysmography (PPG) sensor on the computer mouse. In the second method, ENC-ECG and the air pressure sensor in the seat cushion on a chair were measured. The third method used ECG electrodes and PPG sensors on the toilet seat cover. The validation and regression analysis of the relationship of PAT and SBP are summarized. These methods have considerable errors to be used for all people. But these can be applied for each subject after the parameter customization within acceptable error. So, it is feasible for suggested methods to be used for monitoring of SBP in daily life in non-intrusive way when there is personal identification system of each subject.

  • PDF

Partial Discharge Position Tracking Method using a GIS Partial Discharge Signal and Arrival Time Difference (GIS 부분방전 신호와 도착 시간차 분석을 통한 PD발생 위치 추적)

  • Choi, Mun-Gyu;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1297-1301
    • /
    • 2013
  • This paper analyzes of PD occurrence position through an analysis of the arrival time difference between the GIS partial discharge signal. Because of GIS (Gas Insulated Switchgear) is a facility very important power equipment and as part of the equipment that make up the power system, the stabilization of the power industry, which accounted for 88.5% share of GIS substation in the form of a substation is an important equipment for power supply. In the situation where we are gradually expanding the need for preventive diagnosis in order to improve the efficiency of equipment management and failure prevention for Preventive diagnosis. In this paper as a method for extracting pre-defect of failure of GIS Apply the average value method of calculating the 5 times each using a pulse of the first time of the second pulse (${\Delta}t$) with an oscilloscope generation position PD(Partial Discharge). the results of GIS internal inspection, the partial discharge of the actual the position of the partial discharge was confirmed with an accuracy of about 82% of positions. Arrival time difference in the most effective manner if the partial discharge of GIS internal occurs by applying the averaging method and TOA(Time of arrival) method, the partial discharge occurs you through the measurement and analysis of PD signal occurs was confirmed in the experiment are presented and diagnostic methods location tracking.

Radar identification by scan period validation (스캔주기 유효성 판별에 의한 레이더 식별)

  • Kim, Gwan-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Radar signal analysis of electronic warfare is a technique for identifying a radar type by signal parameters(direction, radion frequency, pulse repetition interval, pulse width, scan period..) extracted from a received radar pulse. However as the modern radar and new threat environments is advanced, radar identification ambiguity arises in the process of identifying the types of radars. In this paper, we analyze the problems of the existing method and propose a new method. This technique determines the validity of the scan period by the difference in the arrival time of the radar pulse and the minimum number of scan period discrimination. Experiments proved that the scan cycle results are derived regardless of the RMS((Root Mean Square) of the input amplitude.

An Algorithm for De-Interleaving of Wobble and Sinusoidal PRIs for Unidentified Radar Signals (미상 레이더의 Wobble 및 Sinusoidal PRI 식별 알고리즘)

  • Lee, Yongsik;Lim, Joongsoo;Lim, Jaesung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1100-1107
    • /
    • 2015
  • In this paper, we propose an algorithm to identify Wobble PRI and Sinusoidal PRI among Radar pulses. We applied not only the DTOA(Difference Time Of Arrival) concept of radar pulse signals incoming to antennas but also a rising and falling cub characteristic of those PRIs. After making a program by such algorithm, we input each 40 data to Wobble PRI's and Sinusoidal PRI's identification programs and in result, those programs fully processed the data the according to expectations. In the future, those programs can be applied to the ESM, ELINT system.

A Study on the Location Awareness System Using TOA(Time of Arrival) of CSS(Chirp Spread Spectrum) Algorithm (CSS 기반의 TOA 알고리즘을 이용한 위치인식 시스템 구현에 관한 연구)

  • Kim, Jung-Soo;Yang, Jin-Uk;Yang, Sung-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.13-25
    • /
    • 2008
  • In this paper, we propose the Location Awareness System adjusting Ranging Technology for CSS(Chirp Spread Spectrum) which is adopted on 2.45GHz standard in IEEE 802.15.4a and TOA(Time-of-Arrival) algorithm. The conventional methods have adopted RSSI, ultrasonic waves and infrared rays in Zigbee. RSSI measures strength indication of received signal and recognizes the position of nodes in RF boundary. However, this technology has the following problems; lots of error by the change of the channel environment and much power consumption. In this paper, adopting chirp pulse on 2.45GHz standard in IEEE 802.15.4a and SDS-TWR(Symmetrical Double Side-Two Way Ranging) method using the characteristic of Spread Spectrum, a new Location Awareness System is suggested. The distance and the coordinate are measured within ${\pm}\;5cm$ by TOA(Time of Arrival) algorithm and proposed algorithm and the data in error rate is decreased less than 1%. Through these results, the algorithm suggested in this paper is verified for its performance in a computer simulation.

  • PDF

Pulse Broadening of Optical Pulse Propagated through the Turbulent Atmosphere (교란대기를 통해 전송되는 광 펄스의 퍼짐에 관한 연구)

  • 정진호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • When an optical pulse is propagated through the atmosphere space, it is attenuated and broadened by the effect of atmospheric turbulence. This pulse broadening is occurred by the fluctuation in the arrival time of pulse at an optical receiver. In digital optical communication, the attenuation is important factor but the pulse broadening is more important. In this paper, thus, we will find the broadening of pulse propagated through the turbulent atmosphere, present it as the function of the structure constant for the refractive index fluctuation, and simulate it to the turbulent strength and the transmission length.