• Title/Summary/Keyword: pulse amplification

Search Result 81, Processing Time 0.026 seconds

Frequency-Modulated Pulse-Amplification Method for Reducing Pulse Shape Distortion

  • Jeong, Jihoon;Cho, Seryeyohan;Hwang, Seungjin;Yu, Tae Jun
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1637-1643
    • /
    • 2018
  • To reduce the laser pulse shape distortion accompanying the amplification process and achieve an intended output pulse shape in the Nd:YAG amplifier chain, we propose a frequency-modulated pulse-amplification method. Assuming carrier-frequency-modulated seed pulses, we numerically simulate the pulse amplification in an Nd:YAG amplifier chain where severe distortion occurs. For the calculation, we develop a modified Frantz-Nodvik equation, which enables two inputs with different carrier frequencies. The simulation results indicate that the temporal contrast of the seed pulse needed to obtain a flat output pulse shape is reduced by 16 - 25 dB when frequency modulation is applied.

Gold-sapphire Plasmonic Nanostructures for Coherent Extreme-ultraviolet Pulse Generation

  • Han, Seunghwoi
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.576-582
    • /
    • 2022
  • Plasmonic high-order harmonic generation (HHG) is used in nanoscale optical applications because it can help in realizing a compact coherent ultrashort pulse generator on the nanoscale, using plasmonic field enhancement. The plasmonic amplification of nanostructures induces nonlinear optical phenomena such as second-order harmonic generation, third-order harmonic generation, frequency mixing, and HHG. This amplification also causes damage to the structure itself. In this study, the plasmonic amplification according to the design of a metal-coated sapphire conical structure is theoretically calculated, and we analyze the effects of this optical amplification on HHG and damage to the sample.

Seismic response of nonstructural components considering the near-fault pulse-like ground motions

  • Zhai, Chang-Hai;Zheng, Zhi;Li, Shuang;Pan, Xiaolan;Xie, Li-Li
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1213-1232
    • /
    • 2016
  • This paper investigates the response of nonstructural components in the presence of nonlinear behavior of the primary structure considering the near-fault pulse-like ground motions. A database of 81 near-fault pulse-like ground motions is used to examine the effect of these ground motions on the response of nonstructural components. For comparison, a database of 573 non-pulse-like ground motions selected from the PEER database is also employed. The effects of peak ground velocity (PGV), maximum incremental velocity (MIV), primary structural degrading behavior and damping of nonstructural components are evaluated and discussed statistically. Results are presented in terms of amplification factor which quantifies the effect of inelastic deformations of the primary structure on subsystem responses. The results indicate that the near-fault pulse-like ground motions can significantly increase the amplification factors of nonstructural components with primary structural period and the magnitude of increase can reach 17%. The effect of PGV and MIV on amplification factors tends to increase with the increase of primary structural ductility. The near-fault pulse-like ground motions are more dangerous to components supported by structures with strength and stiffness degrading behavior than ordinary ground motions. A new simplified formulation is proposed for the application of amplification factors for design of nonstructural components for near-fault pulse-like ground motions.

Regenerative Er-doped Fiber Amplifier System for High-repetition-rate Optical Pulses

  • Liu, Yan;Wu, Kan;Li, Nanxi;Lan, Lanling;Yoo, Seongwoo;Wu, Xuan;Shum, Perry Ping;Zeng, Shuguang;Tan, Xinyu
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.357-361
    • /
    • 2013
  • A regenerative Er-doped fiber amplifier system for a high-repetition-rate optical pulse train is investigated for the first time. A signal pulse train with a wavelength tuning range of 18 nm is produced by a passive mode-locked fiber laser based on a nonlinear polarization rotation technique. In order to realize the amplification, an optical delay-line is used to achieve time match between the pulses' interval and the period of pulse running through the regenerative amplifier. The 16 dB gain is obtained for an input pulse train with a launching power of -30.4 dBm, a center wavelength of 1563.4 nm and a repetition rate of 15.3 MHz. The output properties of signal pulses with different center wavelengths are also discussed. The pulse amplification is found to be different from the regenerative amplification system for CW signals.

A study on development of 30GW class high power glass laser system (30GW급 대출력 글라스레이저의 개발연구)

  • 강형부
    • 전기의세계
    • /
    • v.31 no.5
    • /
    • pp.383-390
    • /
    • 1982
  • The high power glass laser system was designed and constracted which consisted of a TEM$\_$00/ mode Q-switching oscillator, a pulse shaping, system, two-stage pre-amplifiers, five-stage main amplifiers, a Faraday rotator, and a uni-guide slit. The laser output of 3OGW with the pulsewidth of 2 nsec was obtained by performing the amplifiing experiment in this system. When the laser light with the pulsewidth of 10 nsec was amplified, the large factor of amplification was obtained in the beginning of pulse, but the factor of amplification decreased gradually in the later part of pulse. Therefore, the laser light which has short pulsewidth of-2nsec must be amplified in order to obtain the larger factor of amplification. When the laser beam from the high power glass laser system was irradiated to plasma, the reflected laser light from plasma which occured inevitably could be attenuated to the order of 10$\^$-4/ by using the Faraday rotator and the uni-guide slit.

  • PDF

Visualization of Laser Pulse Amplification by Raman Backscattering (라만 후방향산란을 이용한 레이저 펄스 증폭 가시화)

  • Lee Hae-June;Kim Jin-Cheol;Kim Changbum;Kim Guang-Hoon;Kim Jong-Uk;Suk Hy-yong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.73-76
    • /
    • 2002
  • A one-dimensional fluid model has been established for Raman amplification of a short laser pulse in a plasma by a counter-propagating pump. The laser pulse is amplified with a large gain and also may be compressed by nonlinear three-wave Interactions. The spatiotemporal evolutions of the seed and the pump pulses were visualized for linear and nonlinear regimes, and the transition from regular to chaotic behavior of subsidiary pulses was investigated with variation of pump intensity.

  • PDF

Simulation of Amplification Characteristics of Ultrashort Laser Pulse Amplification using Raman Backscattering (라만 후방향 산란을 이용한 레이저 펄스 증폭에서 나타나는 증폭 특성의 시뮬레이션)

  • Kim, Jincheol;Lee, Hae-June;Kim, Guang-Hoon;Kim, Changbum;Kim, Jong-Uk;Hyyong Suk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.230-231
    • /
    • 2002
  • Recently, analysis of transient Raman backscattering in a plasma reported(2.3) that it is possible to reach 10$\^$17/ W/cm$^2$ for 1 micrometer wavelength laser pulse with a counter-propagating pump pulse. The basic mechanism is like this : whorl the two counter-propagating waves in a plasma satisfy the condition of Raman backscattering, w$\_$0/ : w$\_$1/ + w$\_$p/, energy is transferred from the long pulse to the short pulse via three wave interaction(4). (omitted)

  • PDF

A Study on the Amplification Characteristics of High-Power Gaussian Nd:Glass Laser Beam (대출력 Gauss형 Nd:글라스 레이저 비임의 증폭특성에 관한 연구)

  • 강형부;장용무
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.10
    • /
    • pp.741-747
    • /
    • 1987
  • The high-power Nd:glass system with five-stage amplifier was designed and its amplification characteristics was studied for developing high-power Nd:glass laser system as an energy driver of inertial confinement fusion(ICF). In order to study the amplification characteristics of remporal and spacial Gaussian laser beam, the dependence of them on pumping efficiency and rod loss were studied and discussed. The output energy of this system using phosphate Nd glass rod(LHG-7,LHG-8) and silicate Nd glass rod(LSG-91H), respectively, was calculated by the computer simulation using Avizonis-Grotbeck and Frantz Nodvik equations. As results of this simulation, it was found that the shorter the risetime of laser pulse, the larger the amplification factor and that the larger peak value of laser pulse, the lower the amplification factor. The output inergies of 179J, 344J, and 7J were obtained by the designed five-stage amplified high-power Nd:glass laser system using glass rods of LHG-7,LHG-8, and LSG-91H, respectively. From the results it was found that the laser system using the LHG-8 glass rod was the most excellent one among the systems and the cross section for stimulated emission of the gain coefficient was essentially important parameter for the amplification characteristics.

  • PDF

Simulation of Luminance and Uniformity of LGP According to the Laser Scattering Pattern (렌즈형 광섬유를 이용하여 펄스형 반도체 레이저 Beam Shaping 및 증폭 기술 연구)

  • Kwon, Oh-Jang;Kim, Ryun-Kyung;Shim, Young-Bo;Han, Young-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.6
    • /
    • pp.254-258
    • /
    • 2010
  • We investigate an optical technique for beam shaping and optical amplification of a pulsed laser diode without variation of its original properties, such as repetition rate and pulse duration. The horizontal and longitudinal sizes of the pulsed laser diode are 300 and $2{\mu}m$, respectively, and its output power is $1.1mW/cm^2$. The multimodal and elliptical pulse shape of the laser diode is converted to the single-modal and Gaussian pulse shape by using a lensed optical fiber. Since the single-modal lensed fiber coupling from the multimodal pulsed laser diode degrades the output power severely, the output power of the pulsed laser diode is dramatically enhanced by using an optical amplification method based on master oscillated power amplification (MOPA). The pulse qualities of the laser diode are not changed after amplifying the pulse power and the output power was finally measured to be $29mW/cm^2$.

UV ultra-short laser pulse generation and amplification (UV 극초단 레이저 펄스의 발생과 증폭)

  • 이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.324-326
    • /
    • 2004
  • We have obtained ultra-short pulses with a wavelength of 616 nm from a Distributed Feedback Dye Laser pumped by excimer laser. Using the second harmonic generation, we obtained ultra-short pulse at 308nm in ultraviolet region and also performed amplification in 3 stages of XeCl amplifiers.

  • PDF