• Title/Summary/Keyword: pulsation mode

Search Result 36, Processing Time 0.028 seconds

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.

Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure

  • Park, Kyung-Hyun;Leem, Young-Ahn;Yee, Dae-Su;Baek, Yong-Soon;Kim, Dong-Churl;Kim, Sung-Bock;Sim, Eun-Deok
    • ETRI Journal
    • /
    • v.25 no.3
    • /
    • pp.149-155
    • /
    • 2003
  • A self-pulsating multisection distributed-feedback laser diode (DFB LD) can potentially realize all-optical clock extraction. This device generally consists of three sections, two DFB sections and one waveguide section. The most important variable in this device is detuning, which is the relative spectral position between the stop bands of two DFB sections. We fabricated a novel structure in which two gratings were located one over and one under the active layers. Each grating structure was independently defined in processing so that detuning, which is the prerequisite for self-pulsation, could be easily controlled. Observing various self-pulsating phenomena in these devices under several detuning conditions, we characterized the phenomena as dispersive Q-switching, mode beating, and self-mode-locking.

  • PDF

Effect of Gain Dispersion on the Characteristics of Self-Pulsation in a Multisection Complex-Coupled DFB Laser (이득 분산이 다중 영역 복소 결합 DFB 레이저의 Self-Pulsation 특성에 미치는 효과)

  • Kim, Tae-Young;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.56-65
    • /
    • 2007
  • The effect of gain dispersion on the self-pulsation (SP) characteristics due to the mode beating of two modes emitted in a multisection DFB laser composed of two complex-coupled DFB sections and a phase control section is investigated. When the peak wavelength, ${\lambda}_{p}$, of the gain spectrum of the DFB section is positioned in the center of the lasing wavelengths or the Bragg wavelengths of the two DFB sections, the maximum SP frequencies are higher and the modulation index has better characteristics compared to those cases for ${\lambda}_{p}$ fixed at the lasing wavelength or Bragg wavelength of one DFB section, when the difference between the Bragg wavelengths of the two DFB sections, ${\Dalta}{\lambda}_{B}$, is varied. When ${\lambda}_{p}$ is positioned in the renter of the Bragg wavelengths of the two DFB sections, the maximum SP frequency is higher and of the modulation index has better characteristics compared to those of the case for ${\lambda}_{p}$ positioned in the center of the lasing wavelengths of the two DFB sections.

Effect of varying the coupling strength and section length on the self-pulsation characteristics of multisection index-coupled DFB lasers (다중 전극 Index-Coupled DFB 레이저에서 결합 세기 및 각 영역의 길이가 Self-Pulsation 동작 특성에 미치는 영향)

  • Kim, Sang-Taek;Kim, Tae-Young;Ji, Sung-Keun;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.85-98
    • /
    • 2005
  • As the number of compound cavity modes within the stopband of DFB sections decreases, the frequency of mode hopping decreases for the variation of $\Delta$λ$_{B}$, which represents the difference between the Bragg wavelengths of two DFB sections, so that the number of abrupt changes of pulsation frequencies decreases. In addition, the pulsation frequency varies continuously for the variation of the phase in a phase tuning section for a fixed $\Delta$λ$_{B}$. The number of compound cavity modes within the stopband decreases as the length of DFB sections increases and the length of a phase tuning section decreases. Thus stable self-pulsation operations for the variation of $\Delta$λ$_{B}$ and the phase in a phase tuning section could be obtained by proper selection of the coupling strength and the length of each section.ction.

A Study on Measurement and Reduction of Cavity Resonance Based on the Internal Acoustic Modeling of Compressor (공조용 압축기의 Cavity Resonance의 측정 및 저감에 관한 연구)

  • Ahn, B.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.26-33
    • /
    • 1999
  • Pressure pulsation Inside the discharge and suction cavity of rotary and scroll compressor are often a major source of objectionable noise and vibration. The key factor of these noise and vibration is due to the cavity resonance. It is not only necessary to understanding the characteristics of pulsation in order to reduce the excitation force of gas to the cavity but also to verifying the phenomena of cavity resonance. For the purpose of these understandings, measurement and simulation of cavity resonance can lead to a better understandings how they occur and be very important to identify the ways to reduce the noise efficiently. In this paper, modeling of the cavity(internal acoustics inside the shell) is discussed and simulated using FEM. Results from the simulation are compared with those measurement in experiments. In describing of cavity mode by experiments, it is very important to specify the exact conditions under which they are measured. Finally, this paper shows the one example of reduced cavity resonance in the compressor.

  • PDF

A Study of Buck-Boost Current-Source PWM Inverter for Utility Interactive Photovoltaic Generation System (태양광발전과 계통연계를 위한 Buck-Boost 전류원형 PWM 인버터에 관한 연구)

  • Yang Geun-Ryoung;Kang Feel-Soon;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.63-68
    • /
    • 2002
  • In a utility interactive photovoltaic generation system, a PWM inverter is used for the connection between the photovoltaic arrays and the utility. The do current becomes pulsated when the conventional inverter system operates in the continuous current mode and dc current pulsation causes the distortion of the ac current waveform. To reduce pulsation of dc input current, This paper presents a Buck-Boost PWM power inverter and its application for residential photovoltaic system. The PWM power inverter is realized by combining two sets of a high frequency Buck-Boost chopper and by making it operate in the discontinuous conduction mode. In this paper, we show the Buck-Boost PWM power inverter circuit, its equivalent circuit and basic differential equations and the power flow characteristics are clarified when the proposed Inverter is interconnected with the utility lines. In conclusion, the proposed inverter system provides a sinusoidal ac current for domestic loads and the utility line with unity power factor

  • PDF

Acoustic Analysis of the Cavity in Rotary Compressor (로터리 압축기 내부의 소음해석)

  • 정의봉;김봉준;김재호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.97-103
    • /
    • 2000
  • Gas pulsation discharged from the cylinder causes noise in the rotary compressor. Mufflers are usually used to reduce the noise generated by the gas pulsation. The muffler has been designed to maximize the acoustic transmission loss of the muffler. The gas which went through muffler is discharged to the cavity in compressor. Thus, the acoustic characteristics of cavity should be taken into account in muffler design. In this paper, the program for the acoustic substructure synthesis method is developed. This program can be interfaced with SYSNOISE which is commercial acoustic package. Several types of mufflers designed to have the better acoustic performance are suggested in this work and compared with the existing commerical muffler in the compressor. The acoustic performance of mufflers taking into consideration of the cavity in the compressor is also carried out by the developed program.

  • PDF

Utility interactive PV system using buck-boost chopper and partial resonant Inverter (승강압초퍼와 부부공진 인버터를 이용한 계통연계형 태양광 발전시스템)

  • 고강훈;이현우;김영철;정명웅;홍두성
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.278-281
    • /
    • 1999
  • In a utility interactive photovoltaic system, a PWM inverter is used for the connection between the photovoltaic arrays and the utility. The DC current becomes pulsated causes the distortion of the AC current waveform. This paper presents the reduced pulsation of DC input current by operating the inverter with buck-boost chopper in the discontinuous conduction mode. The DC current with contains harmonics component is analyzed by means of separating into two terms of a ripple component and a direct component. The constant DC current without pulsation is supplied from photovoltaic array to the inverter. The proposed inverter system provide a sinusoidal AC current for domestic loads and the utility line with unity power factor.

  • PDF

Frequency Response Analysis of Pipe Conveying Harmonically Excited Fluid (내부 유체의 조화 가진에 의한 배관의 주파수응답해석)

  • Oh Jun-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.1 s.20
    • /
    • pp.81-91
    • /
    • 2005
  • It is well known that the natural frequencies of the pipe come to be lower as internal fluid velocity and pressure increase, and the pipe will be unstable if the fluid velocity is higher than critical velocity. But even if the velocity of the fluid below the critical velocity, resonance will be caused by pulsation of the fluid. So the effects of pulsating fluid in pipe should be also taken into consideration for better analysis. The research of the vibration of piping system due to a fluid pulsation has been studied by many people. But most of them are dealt with determining the boundary between stable and unstable region without analyzing forced response in the stable region. In this study, not only stability analysis but also forced response analysis, which is caused by harmonically excited fluid especially, is conducted. In order to analyze the system numerically, the descretized equation is formulated by using FEM(Finite Element Method). And the results of this method are compared with those of AMM(Assumed Mode Method) which were used by many researcher earlier.

An experimental study on the performance improvement of dead-end type PEMFC with pulsating effect (맥동 효과를 이용한 dead-end type 연료전지의 성능향상에 대한 실험적 연구)

  • Choi, Jong-Won;Seo, Jeong-Hoon;Hwang, Yong-Sheen;Lee, Dae-Heung;Cha, Suk-Won;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.567-571
    • /
    • 2008
  • PEM Fuel Cell operation mode can be classified into dead-end mode or open mode by whether the outlet port is blocked or not. Generally, dead-end type fuel cell has some merits on the pressure drop and system efficiency because it can generate more power than the open type fuel cell due to high operating pressure condition. However, the periodic purging process should be done for removing water which is formed as product of a reaction in the gas diffusion layer. In this study, cathode side dead-end type operation has been conducted. Moreover, pulsating flow generator at the outlet of cathode side has been suggested for increasing the period to purge the formed water because the pulsating flow can make formed water scattered uniformly over the whole channel. As a result, the purging period with pulsation increased by 1.5-2 times longer than that without pulsating.

  • PDF