• Title/Summary/Keyword: pulsating flow

Search Result 164, Processing Time 0.023 seconds

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

Non-Invasive Measurement of Shear Rates of Pulsating Pipe Flow Using Echo PIV (에코 PIV를 이용한 맥동 유동에서의 in vitro 전단률 측정 연구)

  • Kim, Hyoung-Bum;Chung, In-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1567-1572
    • /
    • 2004
  • Although accurate measurement of velocity profiles, multiple velocity vectors, and shear stress in arteries is important, there is still no easy method to obtain such information in vivo. This study shows the utility of combining ultrasound contrast imaging with particle image velocimetry (PIV) for non-invasive measurement of velocity vectors. The steady flow analytical solution and optical PIV measurements (for pulsatile flow) were used for comparison. When compared to the analytical solution, both echo PIV and optical PIV resolved the steady velocity profile well. Error in shear rate as measured by echo PIV (8%) was comparable to the error of optical PIV (6.5%). In pulsatile flow, echo PIV velocity profiles agreed well with optical PIV profiles. Echo PIV followed the general profile of pulsatile shear stress across the artery but underestimated wall shear at certain time points. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

An experimental study on the performance improvement of dead-end type PEMFC with pulsating effect (맥동 효과를 이용한 dead-end type 연료전지의 성능향상에 대한 실험적 연구)

  • Choi, Jong-Won;Seo, Jeong-Hoon;Hwang, Yong-Sheen;Lee, Dae-Heung;Cha, Suk-Won;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.567-571
    • /
    • 2008
  • PEM Fuel Cell operation mode can be classified into dead-end mode or open mode by whether the outlet port is blocked or not. Generally, dead-end type fuel cell has some merits on the pressure drop and system efficiency because it can generate more power than the open type fuel cell due to high operating pressure condition. However, the periodic purging process should be done for removing water which is formed as product of a reaction in the gas diffusion layer. In this study, cathode side dead-end type operation has been conducted. Moreover, pulsating flow generator at the outlet of cathode side has been suggested for increasing the period to purge the formed water because the pulsating flow can make formed water scattered uniformly over the whole channel. As a result, the purging period with pulsation increased by 1.5-2 times longer than that without pulsating.

  • PDF

A study on the critical reynolds number of steady, oscillatory and pulsating flow in a straight duct (직관덕트내에서 정상유동, 진동유동과 맥동유동의 임계레이놀즈수에 관한 연구)

  • 박길문;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.16-20
    • /
    • 1998
  • The critical reynolds number in a square-sectional straight duct is investigated experimentally. The experimental study for the air flow in a square-sectional straight duct is carried out to calssify critical Reynolds number on steady flow and unsteady flow. To calssify the critical Reynolds number we obtained velocity waveform by using a hot-wireanemometer and data acquisition system with photocorder.

  • PDF

Characteristics of Unsteady Flows in a Semi-Induction System by a Variable Volume Helmholtz Resonator (가변 체적 헬름홀츠 공진기에 의한 유사 흡기 시스템의 비정상 유동특성)

  • Kang, K.E.;Kim, K.H.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.57-62
    • /
    • 2009
  • Unsteady flows in a semi-induction system was investigated to verify their characteristics. A semi-induction system was designed and made to verify the Sow characteristics in an intake system. To attain an intact wave of an intake pulse, a single semi-intake system was adopted as a test rig. The system consists of an intake pipe and a rotary valve as a pulse generator, and a variable volume Helmholtz resonator. The variable volume Helmholtz resonator was mounted in the intake pipe to enhance a breathing capacity and engine performance. The phase and amplitude of the pulsating flow in an unsteady flow system were found to affect the charging capacity significantly. The behavior of pressure wave, their phase and amplitude were investigated in various regions. Some of the results obtained from experiments were described.

  • PDF

A Digital Control of Squeeze Film Damper (스퀴즈 필름 댐퍼의 디지탈 제어)

  • 송용한;최현석;최세헌;임윤철
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.24-31
    • /
    • 1998
  • A new type squeeze film damper is proposed and its dynamic characteristics are investigated experimentally. The new one has a pulsating flow supply system which properly adds high pressure oil to the oil film of the damper so that the rotor vibration can be controlled actively. As the result, the amplitude of the rotor vibration can be reduced considerably. The algorithm which compensates the phase lag of servo valve as well as the high-performance servo valve are required in order that a new type squeeze film damper can be more effective device to attenuate the rotor vibration than typical one.

Characteristics on the Pressure Variations According to the Exhaust Pipe Shape of 4-Stroke Gasoline Engine (4행정 가솔린 엔진의 배기관 형상에 따른 압력 변동 특성)

  • Lee, H.D.;Choi, S.C.;Koh, D.K;Lee, C.J.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • In this study. an experimental study has been introduced for the various exhaust pipe geometry of 4-stroke single cylinder engine. The main experimental parameters are the variation of exhaust pipe diameters and lengths to measure the pulsating flow when the intake and exhaust valves are working. As the results of experimental test, the various exhaust geometry were influenced strongly on the exhaust pressure. As the exhaust pipe diameter was decreased, the amplitude and the number of compression wave in exhaust pressure was increased. According to decreasing pipe diameter, the number of compression wave in exhaust pressure was decreased.

  • PDF

Characteristics the Pressure Variations according to the Exhaust Pipe of 4-Stroke Single Engine (4행정 단기통 엔진의 배기관에 따른 압력 변동 특성)

  • Lee, Hyo-Deok;Choi, Seok-Cheun;Lee, Sang-Chul;Lee, Kwang-Young;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1666-1671
    • /
    • 2004
  • In this study, a experimental method has been introduced for the various exhaust pipe geometry of 4-stroke single engine. The main experimental parameters are the variation of exhaust pipe diameters and lengths, to measuring the pulsating flow when the intake and exhaust valves are working, As the results of experimental test, the various exhaust geometry were influenced strongly on the exhaust pressure. As the exhaust pipe diameter was decreased, the amplitude and the number of compression wave in exhaust pressure was increased. According to decreasing pipe diameter, the number of compression wave in exhaust pressure was decreased. When the pipe diameter was increase, the second amplitude was increased.

  • PDF

Optimization Study of Pulsating Jet to Reduce the Separation Bubble behind the Fence (후방 박리기포 감소를 위한 맥동제트의 최적화 연구)

  • Choi, Young-Ho;Kang, In-Su;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2008
  • We carried out the experiments which controled the periodic jet in front of the fence to alter the fence wake. The experiments were performed in circulating water channel and the vertical fence was submerged in the boundary layer. The frequency, jet nozzle distance and speed of jet passing the slit were investigated. Each case divided into 20 phases and phase-averaged results were compared with uncontrolled fence flow. From the results, we found the specific frequency and nozzle distance which were good for reducing the reattachment length. In this case, the reattachment length was decreased 35% compared with the uncontrolled fence flow.