• Title/Summary/Keyword: pulsatile

Search Result 244, Processing Time 0.022 seconds

PULSATILE FLOW SIMULATION OF A NON-NEWTONIAN FLUID THROUGH A BIFURCATION TUBE USING THE CFD ANALYSIS (CFD를 이용한 분지관 비뉴턴 해석)

  • Hwang, D.;Yoo, S.S.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.177-180
    • /
    • 2008
  • The objective of this study is to get simulation data about pulsatile flow of a non-Newtonian fluid through a bifurcated tube. All the process was based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. To define a non-Newtonian fluid, the following viscous models are used; the Powell-Eyring model, the modified Powell-Eyring model, the Cross model, the modified Cross model, the Carreau model, the Carreau-Yasuda model and the modified Power Law model. The flow calculation data using each model were compared with the other data of a existing paper. Finally, the Carreau model was recognized to give the best result with the SC/Tetra code, and the succeeding simulations are made with the model. For the pulsating flow condition, the sine wave type velocity profile is given as the inlet boundary condition. To investigate the effect of geometries and mesh, the pre-test is carried out with various curvature conditions of the bifurcated corner, and then with various mesh conditions. The final process is to calculate flow variables such as the wall shear stress (WSS) and the wall shear stress gradient (WSSG). To validate all the result, the simulation is compared with the existing data of the other papers. Generally speaking, there is a noticeable difference in the maximum and minimum value of WSS. It is not sure that the values in each data are on the exactly same location. However, the overall trend is similar. The next study needs to investigate the same situation by experimental method. Furthermore, if the flow is simulated with more pulsatile conditions, more data of flow field through a bifurcated tube could be achieved.

  • PDF

PULSATILE FLOW SIMULATION OF A NON-NEWTONIAN FLUID THROUGH A BIFURCATION TUBE USING THE CFD ANALYSIS (CFD를 이용한 분지관 비뉴턴 해석)

  • Hwang, D.;Yoo, S.S.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.177-180
    • /
    • 2008
  • The objective of this study is to get simulation data about pulsatile flow of a non-Newtonian fluid through a bifurcated tube. All the process was based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. To define a non-Newtonian fluid, the following viscous models are used; the Powell-Eyring model, the modified Powell-Eyring model, the Cross model, the modified Cross model, the Carreau model, the Carreau-Yasuda model and the modified Power Law model. The flow calculation data using each model were compared with the other data of a existing paper. Finally, the Carreau model was recognized to give the best result with the SC/Tetra code, and the succeeding simulations are made with the model. For the pulsating flow condition, the sine wave type velocity profile is given as the inlet boundary condition. To investigate the effect of geometries and mesh, the pre-test is carried out with various curvature conditions of the bifurcated corner, and then with various mesh conditions. The final process is to calculate flow variables such as the wall shear stress (WSS) and the wall shear stress gradient (WSSG). To validate all the result, the simulation is compared with the existing data of the other papers. Generally speaking, there is a noticeable difference in the maximum and minimum value of WSS. It is not sure that the values in each data are on the exactly same location. However, the overall trend is similar. The next study needs to investigate the same situation by experimental method. Furthermore, if the flow is simulated with more pulsatile conditions, more data of flow field through a bifurcated tube could be achieved.

  • PDF

Analysis for the Flow and Wall Shear Stress with the Diameter Ratios of an Abdominal Aortic Aneurysm in a Pulsatile Flow (맥동 유동에서 복부 대동맥류의 직경비에 따른 유동 및 벽면전단응력 해석)

  • 모정하
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.181-187
    • /
    • 2002
  • The objective of the present study was to two-dimensionally investigate the characteristics of flow and wall shear stress under pulsatile flow in the aneurysm which is a local dilatation of the blood vessel for pulsatile flow. The numerical simulation using the commercial software were carried out for the diameter ratios(ratio of maximum diameter of aneurysm to the diameter of blood vessel) ranging from 1.5 to 2.5 and Womersley number, 15.47. It was shown that a recirculating flow at the bulge was developed and disappeared for one Period and the strength of vortex increased with the diameter ratio Especially. at time of 3.19s. the very weak recirculating flow was developed at the left upper sites of the aneurysm. The maximum values of the wall shear stress increased in Proportion to the diameter ratio. However. the Position of a maximum wall shear stress was the distal end of the aneurysm(z = 35mm) regardless of the diameter ratios.

Compression of the Ulnar Nerve in the Ulnar Tunnel Caused by an Anomalous Pulsatile S-shaped Ulnar Artery (척골관에서 척골동맥의 주행 이상에 의한 척골신경의 압박)

  • Cheon, Nam Ju;Kim, Cheol Hann;Kang, Sang Gue;Tark, Min Seong
    • Archives of Plastic Surgery
    • /
    • v.36 no.1
    • /
    • pp.84-88
    • /
    • 2009
  • Purpose: Compression of the ulnar nerve in the ulnar tunnel is a relatively uncommon condition. Many authors have described several etiologies of ulnar nerve compression. We experienced two cases of ulnar nerve compression in the ulnar tunnel due to an anomalous pulsatile S - shaped ulnar artery. Methods: Case 1: A 51 - year - old man was referred with numbness and paroxysmal tingling sensation along the volar side of the ring and little fingers of his right hand for 6 months. When exploration, the ulnar artery was pulsatile S - shaped and was impinging on the ulnar nerve. To decompress the ulnar nerve, the tortuous ulnar artery was mobilized and translocated radially onto the adjacent fibrous tissue. Case 2: A 41 - year - old man was referred with tingling sensation on the 4 th, 5 th finger of the right hand for 4 months. Sensory nerve conduction velocities of the ulnar nerve was delayed. Preoperative 3D angio CT scan showed an anomalous S - shaped ulnar artery. Same operation was done. Results: The postoperative course was uneventful. After decompression, paroxysmal tingling sensation decreased to less than 1 minute per episode, occurring 1 - 2 times a day. After 4 months, they had no more episodes of numbness and tingling sensation. Examination demonstrated good sensation to pinprick and touch on the ulnar aspect of the hand. Conclusion: We report two cases of ulnar nerve compressive neuropathy that was caused by an anomalous pulsatile S - shaped ulnar artery in the ulnar tunnel. Although this is an unusual cause of ulnar nerve compression, the symptoms will not spontaneously resolve. The prompt relief of compressive neuropathic symptoms following the translocation of the impinging ulnar artery from the affected ulnar nerve onto adjacent tissue proved that the ulnar nerve compression is due to the anomalous vessel.

Effect of Pulsatile Versus Nonpulsatile Blood Flow on Renal Tissue Perfusion in Extracorporeal Circulation (체외순환에서 박동 혈류와 비박동 혈류가 신장의 조직관류에 미치는 영향)

  • Kim Hyun Koo;Son Ho Sung;Fang Yang Hu;Park Sung Young;Kim Kwang Taik;Kim Hark Jei;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.1 s.246
    • /
    • pp.13-22
    • /
    • 2005
  • It has been known that pulsatile flow is physiologic and more favorable to tissue perfusion than nonpulsatile flow. The purpose of this study is to directly compare the effect of pulsatile versus nonpulsatile blood flow to renal tissue perfusion in extracorporeal circulation by using a tissue perfusion measurement system. Material and Method: Total cardiopulmonary bypass circuit was constructed to twelve Yorkshire swines, weighing 20$\~ $30 kg. Animals were randomly assigned to group 1 (n=6, non pulsatile centrifugal pump) or group 2 (n=6, pulsatile T-PLS pump). A probe of the tissue perfusion measurement system $(QFlow^{TM}-500)$ was inserted into the renal pa­renchymal tissue. Extracorporeal circulation was maintained for an hour at a pump flow of 2 L/min after aortic cross-clamping. Tissue perfusion flow of the kidney was measured at baseline (before bypass) and every 10 minutes after bypass. Serologic parameters were collected at baseline and 60 minutes after bypass. Result: Baseline parameters were not different between the groups. Renal tissue perfusion flow was substantially higher in the pulsatile group throughout the bypass (ranged 48.5$\~$ 64 in group 1 vs. 65.8$\~$88.3 mL/min/100 g in group 2, p=0.026$\~$ 0.45) The difference was significant at 30 minutes bypass $(47.5{\pm}18.3\;in\;group\;1\;vs.\;83.4{\pm}28.5$ mL/min/100 g in group 2, p=0.026). Serologic parameters including plasma free hemoglobin, blood urea nitrogen, and creatinine showed no differences between the groups at 60 minutes after bypass (p=NS). Conclusion: Pulsatile flow is more beneficial to tissue perfusion of the kidney in short-term extracorporeal circulation. Further study is suggested to observe the effects to other vital organs or long-term significance.

CFD ANALYSIS FOR A PULSATILE FLOW AROUND A BODY INSIDE A BIFURCATED TUBE (분지관 내 물체 주위 맥동류에 대한 CFD 해석)

  • Hwang, D.Y.;Yoo, S.S.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.183-190
    • /
    • 2009
  • The objective of this study is to get simulation data about pulsatile flow around an interior solid body inside a bifurcated tube. All the processes were based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. The bifurcated tube models were drawn with the bifurcated angle of 45 degrees, considering Murray's law about the diameter ratio. With various locations of the object, the effects of flow on the drag were considered. For the pulsating flow condition, the velocity wave profile was given as the inlet boundary condition. To validate all the result, the simulation was compared with the existing data of the other papers first. Overall flow field of both data were similar, but there was some difference at a zero velocity. Therefore the next simulation was continued with the sine wave profiles where there is no negative flow, and then the data was compared with one of the pulmonary artery velocity where there is negative flow. The final process was to calculate flow variables such as the wall shear stress (WSS) and to compute the drag of the solid object.

  • PDF

A study on non-invasive SaO$_2$ measurement algorithm to improve on effect of the motion artifact (동잡음의 영향을 개선한 비관혈식 산소포화도 측정 알고리즘에 대한 연구)

  • 이준하
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.101-107
    • /
    • 2000
  • Pulse oximetry is a non-invasive optical method which measures arterial oxygen saturation with two different wavelength. We can obtain the pulsating component of the arterial blood superimposed on DC level attenuated by venous blood, skin and other nonpulsatile components. This study is based on computing algorithm of oxygen saturation using the integral ratio of pulsatile components. In this algorithm, we used the half cycle of the pulsatile signal rely on arterial contraction. It's period is about 1/4 in 1 cycle. In the result, Our algorithm with 1/4 period of 1 cycle is similar to existing model. Because of removal that A part have low amplitude and possession in long term from calculating, the effect of the motion-artifact is decrease.

  • PDF

Prediction of Pumping Efficacy of Left Ventricular Assist Device according to the Severity of Heart Failure: Simulation Study (심실의 부하감소 측면에서 좌심실 보조장치의 최적 치료시기 예측을 위한 시뮬레이션 연구)

  • Kim, Eun-Hye;Lim, Ki Moo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.22-28
    • /
    • 2013
  • It is important to begin left ventricular assist device (LVAD) treatment at appropriate time for heart failure patients who expect cardiac recovery after the therapy. In order to predict the optimal timing of LVAD implantation, we predicted pumping efficacy of LVAD according to the severity of heart failure theoretically. We used LVAD-implanted cardiovascular system model which consist of 8 Windkessel compartments for the simulation study. The time-varying compliance theory was used to simulate ventricular pumping function in the model. The ventricular systolic dysfunction was implemented by increasing the end-systolic ventricular compliance. Using the mathematical model, we predicted cardiac responses such as left ventricular peak pressure, cardiac output, ejection fraction, and stroke work according to the severity of ventricular systolic dysfunction under the treatments of continuous and pulsatile LVAD. Left ventricular peak pressure, which indicates the ventricular loading condition, decreased maximally at the 1st level heart-failure under pulsatile LVAD therapy and 2nd level heart-failure under continuous LVAD therapy. We conclude that optimal timing for pulsatile LVAD treatment is 1st level heart-failure and for continuous LVAD treatment is 2nd level heart-failure when considering LVAD treatment as "bridge to recovery".

Research for the Effect of Accumulator and the High Frequency-Hydraulic System of Frequency Characteristics by Experimental Method (고주파 유압시스템의 주파수 특성과 축압기 효과의 실험적 연구)

  • Park, Nam-Eun;Kim, Jae-Soo;Kim, Yang-Soo;Kim, Jong-Rok;Rho, Hyung-Woon;Jeon, Seung-Bae;Na, Hong-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.51-57
    • /
    • 2003
  • Characteristics of the high frequency pulsatile flow have been investigated experimentally to understand the flow phenomena in the hydraulic system. One axis fatigue test bed, which is widely used for automobile field test, is used. Four pressure transducers, an amplifier and a A/D convertor are used to obtain the high frequency pulsatile pressure waveform in hydraulic system. The characteristics of frequency are analyzed by power spectrum method. According to the variations of pump input pressure and actuator acceleration frequency, the pressure is measured with or without an accumulator. The amplitude of pressure with accumulator is very lower than those without accumulator due to absorbing function of accumulator. As the frequency of actuator acceleration is increased, the effect of accumulator become very important to decrease the amplitude of pulsatile pressure waveform with high frequencies.

Non-Invasive Measurement of Shear Rates of Pulsating Pipe Flow Using Echo PIV (에코 PIV를 이용한 맥동 유동에서의 in vitro 전단률 측정 연구)

  • Kim, Hyoung-Bum;Chung, In-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1567-1572
    • /
    • 2004
  • Although accurate measurement of velocity profiles, multiple velocity vectors, and shear stress in arteries is important, there is still no easy method to obtain such information in vivo. This study shows the utility of combining ultrasound contrast imaging with particle image velocimetry (PIV) for non-invasive measurement of velocity vectors. The steady flow analytical solution and optical PIV measurements (for pulsatile flow) were used for comparison. When compared to the analytical solution, both echo PIV and optical PIV resolved the steady velocity profile well. Error in shear rate as measured by echo PIV (8%) was comparable to the error of optical PIV (6.5%). In pulsatile flow, echo PIV velocity profiles agreed well with optical PIV profiles. Echo PIV followed the general profile of pulsatile shear stress across the artery but underestimated wall shear at certain time points. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.