• Title/Summary/Keyword: pullout capacity

Search Result 118, Processing Time 0.026 seconds

Pullout Characteristics of MC Anchor in Shale Layer (셰일지반에 설치된 MC앵커의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2012
  • In this study, the research on MC anchor has been developed as composite type has done. MC anchor exerts bearing pressure on pre-bored hole where the end fixing device is expanded. Therefore, the uplift capacity is to be increased and it has the characteristics that the anchor body is not eliminated from the ground even if the grouting is not carried out properly. Furthermore, it reduces the loss of tension and raises the construction availability by inserting the reinforced bar as well as the anchor cable, while it can improve the long-term stability because the nail is expected to play the role when the loss of the anchor cable is occurred in a long-term. However, because the resistance mechanism of the compound anchor such as MC anchor is different from friction anchor, the estimation method of the uplift capacity by the frictional force of the ground and the grout is not proper. Particularly, in domestic cases, the problem to overestimate or underestimate the uplift capacity is expected because the design method considering the soil characteristics about the compound anchor has not been developed. Therefore, in this study, in order to evaluate the characteristics of MC anchor and a kind of compound anchor, we measured the uplift, the tension and the creep by nine anchors tests in shale ground that the fluctuation of the strength is great. In addition, we analyzed the test result comparing to the result of the general friction anchor and evaluated the characteristics of MC anchor movement to gather the results. As a result of the test, we found the effect that the uplift capacity is increased in shale ground comparing to the general friction anchor.

Strain Rate Effect on the Compressive and Tensile Strength of Hooked Steel Fiber and Polyamide Fiber Reinforced Cement Composite (변형 속도에 따른 후크형 강섬유 및 폴리아미드섬유보강 시멘트 복합체의 압축 및 인장강도 특성)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.76-85
    • /
    • 2017
  • In this study, to evaluate the mechanical properties of fiber-reinforced cement composites by strain rate, hydraulic rapid loading test system was developed. And compressive and tensile strength of the hooked steel fiber and polyamide fiber reinforced cement composite were evaluated. As a result, the compressive strength, strain capacity and elastic modulus were increased with increasing strain rate. The effect of compressive strength by type and volume fraction of fibers was not significant. The dynamic increase factor(DIF) of the compressive strength was higher than that of the CEB-FIP model code 2010 and showed a trend similar to that of ACI-349. The tensile strength and strain capacity were increased with increasing strain rate. The hooked steel fibers were drawn from the matrix. The tensile strength and strain capacity of hooked steel fiber reinforced cement composites were increased as the strain rate increased. The tensile strength and deformation capacity of the fiber reinforced cement composites were increased. And, hooked steel fibers were drawn from the matrix. On the other hand, because the bonding properties of polyamide fiber and matrix is large, polyamide fiber was cut-off with out pullout from matrix. The strain rate effect on the tensile properties of polyamide fiber reinforced cement composites was found to be strongly affected by the tensile strength of the fibers.

Pullout Tests on M12&M20 Stainless Steel Post-Installed Expansion Anchor for Seismic Design in Cracked Concrete (균열 콘크리트에 설치된 M12, M20 내진용 스테인리스스틸 확장식 후설치 앵커 인장 실험)

  • Kim, Jin-Gyu;Chun, Sung-Chul;An, Yeong-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Recently, seismic design for anchors is required, which are used for connecting structural members and non-structural and structural members. In this study, pull-out tests on the new expansion anchors which have been developed for cracked concrete. The anchors of 12 mm and 20 mm diameters were tested which are commonly used. Experiments were conducted on non-cracked concrete and cracked concrete to evaluate the seismic performance of the post-installed anchor. The experimental method complies with the specified test protocol (KCI, 2018). Three experimental variables are included in this study: presence of cracks, concrete compressive strength, and effective embedment depth. The strength of the anchors was evaluated with the characteristic capacity K5% determined from the test results incorporated with the safety of 5% fractile. The characteristic capacity K5% of the non-cracked and cracked concrete specified in KDS 14 20 54 are 9.8 and 7.0, respectively. Test results show that all groups except the three groups have higher characteristic capacity K5% than the KDS code and the nominal strengths of the tested anchors can be determined with the obtained characteristic capacity K5%.

Lateral Behavior of Hybrid Composite Piles Using Prestressed Concrete Filled Steel Tube Piles (긴장력이 도입된 콘크리트 충전 강관말뚝을 사용한 복합말뚝의 수평거동 특성)

  • Park, No-Won;Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.133-143
    • /
    • 2018
  • Concrete filled steel tube (PCFT) piles, which compose PHC piles inside thin steel pipes, were developed to increase the flexural strength of the pile with respect to the horizontal load. In order to compare the flexural strength of PCFT pile with that of steel pipe pile, several flexural tests were performed on the PCFT and steel pipe piles with the same diameter and the P-M curves for both piles were constructed by the limit state design method. Four test piles were also installed and lateral pile load tests were performed to compare the lateral load capacities and lateral behaviors of the hybrid composite piles using PCFT piles and the existing piles such as HCP and steel pipe piles. The flexural test results showed that the flexural strength of PCFT piles was 18.7% higher than that of steel pipe piles with thickness of 12mm and the same diameter, and the mid-span deflection of piles was 50% lower than that of steel pipe piles at the same bending moment. From the P-M curves, it can be seen that the flexural strength of PCFT piles subjected to the vertical load is greater than that of steel pipe piles, but the flexural strength of PCFT piles subjected to the pullout load is lower than that of steel pipe piles. In addition, field pile load tests showed that the PCFT hybrid composite pile has 60.5% greater lateral load capacity than the HCP and 35.8% greater lateral load capacity than the steel pipe pile when the length of the upper pile in hybrid composite piles was the same.

Numerical Analysis on Effect of Permeability and Reinforcement Length (Drainage Path) in Reinforced Soil (보강토에서의 투수성과 보강재길이(배수거리)의 영향에 대한 수치해석)

  • Lee, Hong-Sung;Hwang, Young-Cheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.59-65
    • /
    • 2007
  • Excess pore pressures in low permeability soils may not dissipate quickly enough and decrease the effective stresses inside the soil, which in turn may cause a reduction of the shear strength at the interface between the soil and the reinforcement in MSE walls. For this condition the dissipation rate of pore pressures is most important and it varies depending on wall size, permeability of the backfill, and reinforcement length. In this paper, a series of numerical analysis has been performed to investigate the effect of those factors. The results show that for soils with a permeability lower than $10^{-3}cm/sec$, the consolidation time gradually increases. The increase in consolidation time indicates the decrease in effective stress thus it will result in decrease in pullout capacity of the reinforcement as verified by the numerical analyses. It is also observed that larger consolidation time is required for longer reinforcement length (longer drainage path).

  • PDF

Cyclic Seismic Testing of Full-Scale Column-Tree Type Steel Moment Connections (반복재하 실물대 실험에 의한 컬럼-트리(Column-Tree) 형식 철골 모멘트 접합부의 내진거동 연구)

  • Lee, Cheol Ho;Park, Jong Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.629-639
    • /
    • 1998
  • This paper summarizes the results of full-scale cyclic seismic performance tests on three column-tree type steel moment connections. Each test specimen consisted of a $H-600{\times}200$ beam and a $H-400{\times}400$ column of SS41 (SS400). Key parameter included was column PZ (panel zone) strength relative to beam strength. The seismic performance of specimen with stronger PZ tended to be inferior. Total plastic rotations available in the specimens ranged from 1.8 to 3.0 (% rad). The limited test results in this study seem to support the speculation that permitting PZ yielding shall be more beneficial to enhancing total plastic rotation capacity of the moment connection. Beam flange fracture across the heat affected zone and divot-type pullout of the column flange were observed in the tests. A conceptual mechanical model consistent with observed test results was also sought.

  • PDF

Pull-out Behaviors of Headed Bars with Different Details of Head Plates (Head 플레이트 상세에 따른 Headed Bars의 인발거동에 관한 연구)

  • Park, Hyun-Gyoo;Yoon, Young-Soo;Ryoo, Young-Sup;Lee, Man-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.95-104
    • /
    • 2002
  • This paper presents the pull-out failure mode on Headed Bars and prediction of tensile capacity, as governed by concrete cone failure. 17 different plate types, three different concrete strengths and three different welding types of specimens were simulated. Test variables are the reinforcing bar diameters connected to headed plate (e.g., 16mm, 19mm and 22mm), the head plate shapes (e.g., circular, square, rectangular), the dimensions of head plates (e.g., area and thickness), the types of welding scheme for connection of reinforcing bars and head plates (e.g., general welding and friction welding). Headed Bars were manufactured in different areas, which shape and thickness are based on ASTM 970-98. Calculation of Embedment length in concrete is based on CSA 23.3-94, and static tensile load was applied. Pullout capacities tested were compared to the values determined using current design methods such as ACI-349 and CCD method. If compare experiment results and existings, Headed bar expressed high strength and bigger breakdown radious than standard by wide plate area and anomaly reinforcing rod unlike anchor.

Investigation of the Rotational Displacement of the Suction Anchor Subjected to the Inclined Pullout Load in Silty Sand (사질토 지반에서 경사 인발 하중을 받는 석션 앵커의 회전 거동 평가)

  • Bae, Jun-Sik;Jeong, Yeong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.267-273
    • /
    • 2020
  • Suction anchors are used for floating structures because they have advantages in installation and stability. Recently, the demand for floating structures requiring low allowable displacement has increased. Thus, it is strongly suggested that the displacement of the suction anchor be evaluated. However, conventional studies regarding suction anchors have concentrated on the capacity of the anchor, and research on the displacement of the anchor is limited. In particular, rotation is the primary behavior of a suction anchor subjected to an inclined load, and related information has been insufficient. Therefore, the main objective of this paper is to investigate the rotation behavior of a suction anchor via centrifuge model tests. The experimental parameters are the inclination of the pull-out load, anchor dimensions, and aspect ratio. The rotation values of suction anchors were compared using a series of load-rotation curves. The results show that the inclination of the load has a dominant influence on the rotation behavior of the suction anchor.

Pullout Behavior Characteristics of Enlarged Cylinder Type Anchor Using Numerical Analysis (수치해석을 이용한 확공형 앵커의 인발거동 특성)

  • Moon, Joon-Shik;Lee, Min-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • Numerical analysis was carried out using a finite element analysis program to analyze the behavior characteristics of enlarged cylinder type anchor. It was found that the ultimate resistance of enlarged cylinder type anchor increases with the enlargement angle from numerical analysis for various enlargement angle cases. In the case of $30-60^{\circ}$ of enlargement angle, the deformation and stress distribution characteristics in anchor are similar regardless of enlargement angle. However, when the same tensile force is applied, there is a difference in the degree of frictional resistance because of difference of displacement of top of grouting zone. Also, it was found that the maximum compressive force and tensile force were generated at the cone of the upper portion of the grouting zone, and tensile fracture of the upper grouting portion is likely to occur.

Development of a retrofit anchor system for remodeling of building exteriors

  • Yeun, Kyu Won;Hong, Ki Nam;Kim, Jong
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.839-856
    • /
    • 2012
  • To enable remodeling of the exterior of buildings more convenient, such finishing materials as curtain walls, metal panels, concrete panels or dry stones need to be easily detached. In this respect, this study proposed a new design of the slab for the purposes. In the new design, the sides of the slab were properly modified, and the capabilities of anchors fixed in the modified slab were experimentally tested. In details, a number of concrete specimens with different sizes and compressive strengths were prepared, and the effect of anchors with different diameters and embedment depths applied in the concrete specimens were tested. The test results of the maximum capacities of the anchors were compared with the number of current design codes and the stress distribution was identified. This study found that the embedment depth specified in the current design code (ACI318-08) should be revised to be more than 1.5 times the edge distance. However, with the steel sheet reinforcement, the experiment acquired higher tensile strength than the design code proposed. In addition, for two types of specimens in the tensile strength experiment, the current design code (ACI 318-08) is overestimated for the anchor depth of 75 mm. This study demonstrated that the ideal breakout failure was attainable for the side slot details of a slab with more than 180 mm of a slab thickness and less than 75 mm of an anchor embedment depth. It is expected that these details of the modified slab can be specified in the upgraded construction design codes.