• Title/Summary/Keyword: pull-out strength

Search Result 296, Processing Time 0.083 seconds

Pull-out Strengths of GFRP-Concrete Bond Exposed to Applied Environmental Conditions

  • Kabir, Muhammad Ikramul;Samali, Bijan;Shrestha, Rijun
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.69-84
    • /
    • 2017
  • This paper presents results of an experimental investigation on the behaviour of bond between external glass fibre reinforced polymer reinforcement and concrete exposed to three different environmental conditions, namely, temperature cycles, wet-dry cycles and outdoor environment separately for extended durations. Single shear tests (pull-out test) were conducted to investigate bond strengths (pull-out strengths) of control (unexposed) and exposed specimens. Effect of the exposure conditions on the compressive strength of concrete were also investigated separately to understand the effect of changing concrete compressive strength on the pull-out strength. Based on the comparison of experimental results of exposed specimens to control specimens in terms of bond strengths, failure modes and strain profiles, the most significant degradation of pull-out strength was observed in specimens exposed to outdoor environment, whereas temperature cycles did not cause any deterioration of strength.

Numerical modelling of the pull-out response of inclined hooked steel fibres

  • Georgiadi-Stefanidi, Kyriaki;Panagouli, Olympia;Kapatsina, Alexandra
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.127-143
    • /
    • 2015
  • Steel fibre reinforced concrete (SFRC) is an anisotropic material due to the random orientation of the fibres within the cement matrix. Fibres under different inclination angles provide different strength contribution of a given crack width. For that the pull-out response of inclined fibres is of great importance to understand SFRC behaviour, particularly in the case of fibres with hooked ends, which are the most widely used. The paper focuses on the numerical modelling of the pull-out response of this kind of fibres from high-strength cementitious matrix in order to study the effects of different inclination angles of the fibres to the load-displacement pull-out curves. The pull-out of the fibres is studied by means of accurate three-dimensional finite element models, which take into account the nonlinearities that are present in the physical model, such as the nonlinear bonding between the fibre and the matrix in the early stages of the loading, the unilateral contact between the fibre and the matrix, the friction at the contact areas, the plastification of the steel fibre and the plastification and cracking of the cementitious matrix. The bonding properties of the fibre-matrix interface considered in the numerical model are based on experimental results of pull-out tests on straight fibres.

Development of Tie-Bar Installation Method for Concrete Pavement Widening (콘크리트포장 확장부 타이바 설치방법의 개발)

  • Hwang In-Kyu;Yang Sung-Chul;Jeong Jin-Hoon;Yoo Tae-Seok
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.33-43
    • /
    • 2006
  • Pull-out strength of tie-bin used in pavement construction is not an issue because those are embedded in newly placed concrete slabs. However, sufficient pull-out strength should be secured in widening constructions because, in case, the tie-bars are inserted into drilled holes of the existing slabs with liquid filler. Insufficient pull-out strength will result in lowered load transfer efficiency between adjacent slabs in addition to poor serviceability and durability due to joint widening. The pull-out strength of the tie-bars installed by current method is evaluated and improved methods are proposed. The field pull-out strength obtained by the current method was only 42.7% of required strength. Its first counterproposal is using to insert the liquid filler into drilled holes and stoppers to prevent it from flowing out of the holes. However, this method was not judged to secure desired level of quality control. The second counterproposal which substitutes the existing type of the tie-bars by SL anchor bolts was judged to secure sufficient pull out-strength in addition to the quality control and constructibility.

  • PDF

Analyses of Fracture Surfaces after Pull-out Test: Brown Oxide (Pull-out 시험 후의 표면분석 : 갈색산화물)

  • Lee, H.Y.;Kim, S.R.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.142-150
    • /
    • 2001
  • Due to naturally formed copper oxides, the adhesion strength between copper and epoxy resin is often very poor. To improve the adhesion strength between copper and epoxy resin, Cu-based leadframe sheets were oxidized in a brown-oxide forming solution. Then the effect of brown-oxide formation on the adhesion strength of leadframe to epoxy molding compound (EMC) was studied using pull-out specimens. After the pull-out test, fracture surfaces were analyzed using SEM, AES and EDS to determine failure path. The results showed that the failure path lay over inside the CuO and inside the EMC irrespective of the pull strength.

  • PDF

A Study of Pull-out strength increasement by root of grasses (식물뿌리에 의한 인발력 증가에 관한 연구)

  • Kim, Taegyun;Chae, Soo Kwon;Chun, Seung Hoon;Jeong, Jae Cheol
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.199-210
    • /
    • 2012
  • In this study, a pull-out strength increasement of grasses was tested in field and the relationship between a weight of root and pull-out strength was established. The tested grasses were commmon reed, reed and sedge which were cultivated by mat-type like turf and used for revegetation of bank. The shear stress of soil at a section can be discribed as a function of root area and pull-out strength, therefore the result of this study will be used as a foundational data for reinforcing the shear stress of the revegetated bank. The heavier weight of root increased, the stronger shear stress was for all grasses. But the relationship between the weight and the shear stress were different by a kind of grass. The difference between common reed, sedge and reed is due to difference of growth and propagation. A reed propagates by subterranean stem and a root weight and pull-out strength are linearly increased by root and growth of subterranean stem.

Evaluating the pull-out load capacity of steel bolt using Schmidt hammer and ultrasonic pulse velocity test

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • Steel bolts are used in the construction industry for a large variety of applications that range from fixing permanent installations to temporary fixtures. In the past much research has been focused on developing destructive testing techniques to estimate their pull-out load carrying capacity with very little attention to develop non-destructive techniques. In this regards the presented research work details the combined use of ultrasonic pulse velocity and Schmidt hammer tests to identify anchor bolts with faculty installation and to estimate their pull-out strength by relating it to the Schmidt hammer rebound value. From experimentation, it was observed that the load capacity of bolt depends on its embedment length, diameter, bond quality/concrete strength and alignment. Ultrasonic pulse velocity test is used to judge the quality of bond of embedded anchor bolt by relating the increase in ultrasonic pulse transit time to the presence of internal pours and cracks in the vicinity of steel bolt and the surrounding concrete. This information combined with the Schmidt hammer rebound number, R, can be used to accurately identify defective bolts which resulted in lower pull-out strength. 12 mm diameter bolts with embedment length of 70 mm and 50 mm were investigated using constant strength concrete. Pull-out load capacity versus the Schmidt hammer rebound number for each embedment length is presented.

A Study on Bond Strength between Fiber Sheet and Concrete for Concrete Surface Preparation and Heating Condition (콘크리트 표면처리와 가열조건에 따른 섬유쉬트와 콘크리트의 부착강도에 관한 연구)

  • Ahn, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.201-207
    • /
    • 2002
  • An advanced fiber sheet has been widely used for strengthening of the concrete structures due to its excellent properties such as high strength and light weight. Bond strength is very important in strengthening the concrete structures using an advanced fiber sheet. This research examines the bond behavior between fiber sheet and concrete, investigates the bond strength by the direct pull-out test and the tensile-shear test. To obtain the tensile-shear strength a double-face shear type bond test is conducted. The primary test variables are the types of concrete surface roughness (disk-grinding/chipping) and retrofitting methods (bonding/injection). Thirty specimens were tested to evaluate the bond strength. It is shown that the average bond strength between fiber sheet and concrete by the direct pull-out test and the tensile-shear test is $22.3{\sim}23.1kgf/cm^2$ $17.92{\sim}19.75kgf/cm^2$, respectively.

Delayed Lateral Row Anchor Failure in Suture Bridge Rotator Cuff Repair: A Report of 3 Cases

  • Jeong, Jae-Jung;Ji, Jong-Hun;Park, Seok-Jae
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.4
    • /
    • pp.246-251
    • /
    • 2018
  • Compared to single row repair, use of lateral row anchors in suture bridge rotator cuff repair enhances repair strength and increases footprint contact area. If a lateral knotless anchor (push-in design) is inserted into osteoporotic bone, pull-out of the lateral row anchor can developed. However, failures of lateral row anchors have been reported at several months after surgery. In our cases, even though complete cuff healing occurred, delayed pull-out of the lateral row anchor in the suture bridge repair occurred. In comparison to a conventional medial anchor, further biomechanical evaluation of the pull-out force, design, and insertion angle of the lateral anchor is needed in future studies. We report three cases with delayed pull-out of lateral row anchor in suture bridge rotator cuff repair with a literature review.

Strength Improvement of Insert Joint for Composite Sandwich Structure (복합재 샌드위치 구조의 인써트 조인트의 강도 향상)

  • Kim, Kwang-Soo;An, Jae-Mo;Jang, Young-Soon;Yi, Yeong-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • In this study, joint strength and failure characteristics were experimentally examined with pull-out and shear specimens in which new designed "high strength insert" was applied. The performance of the new insert was compared with typical insert design. The experimental results showed that the "high strength insert" had the joint strengths of 2.1 times in the pull-out specimens and 2.04 times in the shear specimen compared with typical insert joints. Therefore, the new developed "high strength insert" will be usefully used in the aerospace structure.

Effects of Steel Fiber Reinforcement and the Number of Hooked Bars at R/C Exterior Joints

  • Choi, Ki-Bong
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 1999
  • An experimental study was performed on the Pull-out behavior of 90-deg standard hooks from the exterior beam-column connections. the effects of the number of hooked bars and fiber reinforcement of the joint area were investigated with the following conclusions : (1) Under the pull-out action of hooked bars. the damage and cracking of joint area the number of hooks pulling out from a joint increases; (2) Substitution of the transverse column (confining) reinforcement with steel fibers at the joint region effectively reduces the extent of cracking in exterior joints caused by the pull-out of hooked bars; (3) The pull-out strength and post-peak ductility of hooked bars are adversely influenced by the increase in number of hooks pulling out from an exterior joint. Current hooked bar anchorage design guidelines may be improved by considering the effect of the number of hooked bars on anchorage conditions at the exterior joints; and (4) The strength and ductility of hooked bars under pull-out forces are positively influenced by substituting the conventional confining reinforcement of exterior joints with steel fibers . The application of steel fibers to the exterior joints is an effective technique for improving the anchorage conditions of hooked bars, and also for reducing the congestion of reinforcement in the beam-column connections.

  • PDF