• Title/Summary/Keyword: pull-in phenomena

Search Result 20, Processing Time 0.022 seconds

Dynamic Analysis of Jerking in Push-Pull Type Train (Push-Pull Type 철도차량 Jerking 현상 해석)

  • 김영준;박상규
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.502-509
    • /
    • 1998
  • The scheme to reduce jerking phenomena in one push-pull type trainset was proposed. To simulate the jerking between coaches, dynamic analysis model was made. This model could analyze longitudinal dynamic behavior between locomotives and coaches caused by spring and damping characteristics of couplers and center pivots; characteristic curves of traction and braking. To validate the analysis results, tests were conducted in the same driving and braking condition. Comparison of longitudinal acceleration between simulation and test results shows a good agreement. To minimize the jerking phenomena, lots of dynamic simulations were conducted with varying driving/braking effort curve. From the results of simulations, an efficient and economic way to reduce jerking phenomena was found to be to reduce slope of tractive effort curve and synchronize braking time between locomotives and coaches. Test results show that this way could reduce the jerking Phenomena. To express jerkins Phenomena quantitatively, maximum peak to peak values of acceleration were used.

  • PDF

Tire and Vehicle Pull I-Experimental Results (타이어와 차량 쏠림 I-시험결과)

  • 이정환;이주완
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.194-201
    • /
    • 2000
  • It is called vehicle pull when a vehicle drifts in the lateral direction under the straight-ahead motion with no steering or external input. Recently vehicle pull draws attention as one of the critical evaluation items from the customers on the vehicle quality. It is generally recognized that the vehicle pull is complex phenomena due to internal and external factors. In this paper the relations between vehicle pull and ire were investigated through close survey on the road test results from the final inspection of car manufactures. Through this investigation the factors are identified which play an important role in causing vehicle pull problem.

  • PDF

Modeling of Liquid Entrainment and Vapor Pull-Through in Header-Feeder Pipes of CANDU

  • Cho Yong Jin;Jeun Gyoo Dong
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.142-152
    • /
    • 2004
  • The liquid entrainment and vapor pull-through offtake model of RELAP5/MOD3 had been developed for SBLOCA (Small Break Loss of Coolant Accident). The RELAP5/MOD3 model for horizontal volumes accounts for the phase separation phenomena and computes the flux of mass and energy through a branch when stratified conditions occur in the horizontal pipe. In the case of CANDU reactor, this model should be used in the coolant flow of 95 feeders connected to the reactor header component under the horizontal stratification in header. The current RELAP5 model can treat the only 3 directions junctions; vertical upward, downward, and side oriented junctions, and thus improvements for the liquid entrainment and vapor pull-through model were needed for considering the exact angles. The RELAP5 off-take model was modified and generalized by considering the geometric effect of branching angles. Based on the previous experimental results, the critical height correlation was reconstructed by use of the branch line connection angle and validation analyses were also performed using SET. The new model can be applied to vertical upward, downward and angled branch, and the accuracy of the new correlations is more improved than that of RELAP5.

Design of a smart MEMS accelerometer using nonlinear control principles

  • Hassani, Faezeh Arab;Payam, Amir Farrokh;Fathipour, Morteza
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • This paper presents a novel smart MEMS accelerometer which employs a hybrid control algorithm and an estimator. This scheme is realized by adding a sliding-mode controller to a conventional PID closed loop system to achieve higher stability and higher dynamic range and to prevent pull-in phenomena by preventing finger displacement from passing a maximum preset value as well as adding an adaptive nonlinear observer to a conventional PID closed loop system. This estimator is used for online estimation of the parameter variations for MEMS accelerometers and gives the capability of self testing to the system. The analysis of convergence and resolution show that while the proposed control scheme satisfies these criteria it also keeps resolution performance better than what is normally obtained in conventional PID controllers. The performance of the proposed hybrid controller investigated here is validated by computer simulation.

A Study on the Preparation and Mechanical Properties of Hybrid Composites Reinforced Waste FRP and Urethane Foam (폐 FRP/Urethane Foam 충진 혼성복합재의 제조 및 기계적 물성에 관한 연구)

  • 황택성;신경섭;박진원
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.564-570
    • /
    • 2000
  • The waste FRP occured in the fabrication of SMC (sheet molding compound) bathtubs and the waste polyurethane foam occured in electronic manufacture and waste insulator were applied as a soundproof and light weight pannel in the waste FRP unsaturated polyester matrix resin composites to recycle. The effect of filler contents on the mechanical properties and interfacial phenomena of the filler and matrix on the composites was evaluated. The tensile strength of composites reached its maximum value of 82.34 MPa when the filler content was 70 wt%, and the more content of reinforcement is increased, the more tensile modulus was decreased. The flexural strength and modulus of composites, reinforced 70 wt% with filler content, were dominant compared to the other samples to 72.5 MPa, 958.4 MPa respectively. When composite of reinforced 70 wt% with filler content, it was confirmed that pull out phenomena and cracks did not occur in the interface of reinforcement and matrix resin through the SEM observation. Also, waste FRP and urethane foam were dispersed well into matrix resin as filler.

  • PDF

A Study on the Preparation ana Mechanical Properties of Composites Reinforced FRP Waste and Rock-Crush Sludge (폐 FRP/석분슬러지 충전 복합재의 제조 및 기계적 물성에 관한 연구)

  • 황택성;박진원;이철호
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.829-836
    • /
    • 2000
  • In order to recyle the FRP waste from SMC bathtubs and rock-crush sludge obtained as a byproduct of stones, the composite consisting of the FRP and rock-crush sludge and the unsaturated polyester matrix resin were prepared. To enhance the interfacial bonding force between the reinforcements and the matrix resin, the rock-crush sludge was treated with silane coupling agent, ${\gamma}$-methacryloxypropyltrimethoxysilane (${\gamma}$-MPS) and their mechanical properties and interface phenomena were examined. The flexural modulus of the composite containing 10 wt% rock-crush powder treated with 3 wt% silane coupling agent showed the maximum value. And also the initial thermal degradation temperature of composites were in the range of 352~359$^{\circ}C$. From these results, we observed that the weight loss of composites was almost constant regardless of the concentration of silane coupling agent. It is confirmed that the interface of the composites containing filler treated with ${\gamma}$-MPS was improved in that there were no pull-out phenomena between the reinforcement and matrix resin.

  • PDF

Study on the Characteristics of Thrust and Torque for Partially Submerged Propeller (부분 침수 프로펠러의 bollard pull 추력 및 토오크 특성 연구)

  • Park, H.G.;Lee, T.G.;Paik, K.J.;Choi, S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.264-272
    • /
    • 2011
  • Shipbuilders carry out the operation test to check the conditions of the main propulsion system and auxiliaries for moored vessel in the quoy before the sea trial. The estimation of the thrust and torque for the partially submerged propeller should be prepared to ensure the safety of mooring line and the ship. In this paper, the variations of the thrust and torque according to the shaft submergence and the propeller rotating speed in bollard pull condition are investigated with the model test and the numerical analysis. Based on these resaearch, the empirical formula representing the physical phenomena of the partially submerged propeller is derived and validated through comparison to measurement results of full-scale propellers under the quoy operation test.

Fracture Characteristics of Finite-Width CFRP Plates by Acoustic Emission (AE법에 의한 유한 폭 CFRP 판재의 파괴특성)

  • Park, Sung-Oan;Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.125-132
    • /
    • 2007
  • The purpose of present paper is to investigate a fracture characteristics of the finite-width single-edge-notch(SEN) carbon fiber/epoxy reinforced plastics(CFRP) plates by using an acoustic emission(AE). Uni-directionally oriented 10 plies CFRPs specimen which had different notch length were prepared for monotonic tensile test. Matrix cracking appeared over whole testing process and fiber breaking appeared later on mainly Load distribution factor of the matrix confirmed that increased according as increases of plate width ratio. The amplitude distribution of AE signal from a specimens is an aid to the determination of the different fracture mechanism such as matrix cracking, disbonding, interfacial delamination, fiber pull-out, fiber breaking, and etc. In the result of AE amplitude distribution analysis, matrix cracking, fiber disbonding or interfacial delamination, and fiber pull-out or fiber breaking signal correspond to <65dB, <75dB, and <90dB respectively, Also, changes of the slope of cumulative AE energy represented crazing phenomena or degradation of materials.

Three-dimensional numerical analysis of nonlinear phenomena of the tensile resistance of suction caissons

  • Azam, Arefi;Pooria, Ahad;Mehdi, Bayat;Mohammad, Silani
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.255-270
    • /
    • 2023
  • One of the main parameters that affect the design of suction caisson-supported offshore structures is uplift behavior. Pull-out of suction caissons is profoundly utilized as the offshore wind turbine foundations accompany by a tensile resistance that is a function of a complex interaction between the caisson dimensions, geometry, wall roughness, soil type, load history, pull-out rate, and many other parameters. In this paper, a parametric study using a 3-D finite element model (FEM) of a single offshore suction caisson (SOSC) surrounded by saturated soil is performed to examine the effect of some key factors on the tensile resistance of the suction bucket foundation. Among the aforementioned parameters, caisson geometry and uplift loading as well as the difference between the tensile resistance and suction pressure on the behavior of the soil-foundation system including tensile capacity are investigated. For this purpose, a full model including 3-D suction caisson, soil, and soil-structure interaction (SSI) is developed in Abaqus based on the u-p formulation accounting for soil displacement (u) and pore pressure, P.The dynamic responses of foundations are compared and validated with the known results from the literature. The paper has focused on the effect of geometry change of 3-D SOSC to present the soil-structure interaction and the tensile capacity. Different 3-D caisson models such as triangular, pentagonal, hexagonal, and octagonal are employed. It is observed that regardless of the caisson geometry, by increasing the uplift loading rate, the tensile resistance increases. More specifically, it is found that the resistance to pull-out of the cylinder is higher than the other geometries and this geometry is the optimum one for designing caissons.

Big-data Analytics: Exploring the Well-being Trend in South Korea Through Inductive Reasoning

  • Lee, Younghan;Kim, Mi-Lyang;Hong, Seoyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.1996-2011
    • /
    • 2021
  • To understand a trend is to explore the intricate process of how something or a particular situation is constantly changing or developing in a certain direction. This exploration is about observing and describing an unknown field of knowledge, not testing theories or models with a preconceived hypothesis. The purpose is to gain knowledge we did not expect and to recognize the associations among the elements that were suspected or not. This generally requires examining a massive amount of data to find information that could be transformed into meaningful knowledge. That is, looking through the lens of big-data analytics with an inductive reasoning approach will help expand our understanding of the complex nature of a trend. The current study explored the trend of well-being in South Korea using big-data analytic techniques to discover hidden search patterns, associative rules, and keyword signals. Thereafter, a theory was developed based on inductive reasoning - namely the hook, upward push, and downward pull to elucidate a holistic picture of how big-data implications alongside social phenomena may have influenced the well-being trend.