• Title/Summary/Keyword: psi function

Search Result 172, Processing Time 0.02 seconds

Flexual strength of resins for provisional fixed prostheses (임시 고정성 보철물 제작용 레진의 굽힘강도)

  • Choi, Myoung-Ah;Ahn, Seung-Geun;Cho, Kuk-Hyeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.3
    • /
    • pp.221-227
    • /
    • 2000
  • Provisional fixed partial dentures(FPDs) are an important part of many prosthodontic treatment procedures. These provisional fixed prostheses must fulfill biologic, mechanical, and esthetic requirements to be considered successful. Consideration of all these factors and requirements are important because provisional resin restorations may be worn over a long period to assess the results of periodontal and endodontics therapies, and also during the restorative phase of implant reconstructive procedures. This in vitro study examined flexual strength of four resins commonly used for fixed provisional prostheses. The effects of polymerization conditions were also evaluated. The four resins tested were : Caulk Temporary bridge resin(L.D. Caulk Co. Dentsply International Millford), Jet(Lang Dental Mfg. Co. Chicago. ILL. U.S.A), Alike (Coe Laboratories. Inc. Chicago. ILL. U.S.A) and Tokuso Curefast (Coe Laboratories. Inc. Chicago. ILL. U.S.A) The test specimens were 65mm long, 14mm wide, and 3.5mm thickness. 10 specimens of four resins were cured for 15 minutes at atmospheric pressure and 10 specimens of four resins were cured at an additional pressure of approximately 20 psi. A total of 80 specimens were prepared. The flexual strength was determined by three-point bending test. Data were analysed with the Paired samples T-test and Tukey student-range test Within the limitations imposed in this study, the following conclusions can be drawn : 1. Under the condition of bench curing, Caulk Temporary bridge resin showed the highest flexual strength. In decreasing order, the flexual strength of the other materials was as follows : Jet, Tokuso Curefast, Alike, and Caulk Temporary bridge resin demonstrated significantly higher strength than other resins. 2. Under the condition of pressure curing, Jet showed the highest flexual strength. In decreasing order, the flexual strength of the other materials was as follows : Caulk Temporary bridge resin, Tokuso Curefast, and Alike. There were all statistically significant differences among four resins 3. There was a statistically significant difference between bench- and pressure-cured specimens in all four materials.

  • PDF

The Effect of Temporary Cement Cleaning Methods on the Retentive Strength of Cementation Type Implant Prostheses (임시 시멘트 제거방법이 시멘트 유지형 임플란트 보철물의 유지력에 미치는 영향)

  • Shin, Hwang-Kyu;Song, Young-Gyun;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.125-140
    • /
    • 2011
  • The remnant of temporary cement on the intaglio surface of cast restoration may have a negative effect on the retentive strength of permanent cement. This study was to evaluate the effect of temporary cement cleaning methods on the retentive strength of cementation type implant prostheses. Prefabricated implant abutments - height 5.5mm, diameter 4.5mm, 6 degree axial wall taper with chamfer margins were used. Forty copings-abutment specimens were divided into four groups(each n=10) according to the cleaning methods for temporary cement(Temp-$Bond^{(R)}$) as follows : no temporary cementation(the control group), orange solvent, ultrasonic cleaning, air borne-particle abrasion. After the application of temporary cement and the separation, the cleaning procedure was performed according to the protocol of each group. The specimens were cemented with $Premier^{(R)}$ Implant $Cement^{TM}$. After the permanent cementation, the specimens were subjected to thermocycling and pulled out from the specimens with a universal testing machine at a cross-head speed of 0.5mm/min. After the retentive strength test, all the specimens were cleaned using ultrasonic cleaning, abraded with air borne-particles, and steam-cleaned. Likewise, the specimens were temporarily cemented(Temp-$Bond^{(R)}$ NE), cleaned according to the protocol of each group, cemented with $Premier^{(R)}$ Implant $Cement^{TM}$ and subjected to thermocycling and measurement of their retentive strength. The mean of group with orange solvent were significantly lower than those of other groups(p<0.05). There was no significance between group with ultrasonic cleaning and group with air borne-particle abrasion. Group with ultrasonic cleaning and group with air-particle abrasion were no significance at control group. There was no significance between group cemented with Temp-$Bond^{(R)}$ and group cemented with Temp-$Bond^{(R)}$ NE. Within the limitation of this study, it can be concluded that the temporary cement cleaning method with only orange solvent may have a negative effect on the retentive strength of permanent cement. Ultrasonic cleaning and air borne-particle abrasion methods are recommended for the temporary cement cleaning method on cementation type implant prostheses.