• Title/Summary/Keyword: pseudosphere.

Search Result 2, Processing Time 0.013 seconds

Totally umbilic lorentzian surfaces embedded in $L^n$

  • Hong, Seong-Kowan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.9-17
    • /
    • 1997
  • Define $\bar{g}{\upsilon, \omega) = -\upsilon_1\omega_1 + \cdots + \upsilon_n\omega_n$ for $\upsilon, \omega in R^n$. $R^n$ together with this metric is called the Lorentzian n-space, denoted by $L^n$, and $R^n$ together with the Euclidean metric is called the Euclidean n-space, denoted by $E^n$. A Lorentzian surface in $L^n$ means an orientable connected 2-dimensional Lorentzian submanifold of $L^n$ equipped with the induced Lorentzian metrix g from $\bar{g}$.

  • PDF

PROJECTIONS OF PSEUDOSPHERE IN THE LORENTZ 3-SPACE

  • Birman, Graciela S.;Desideri, Graciela M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.483-492
    • /
    • 2007
  • In this paper, we study the map projections from pseudo-sphere $S_1^2$ onto the non-lightlike surfaces in the 3-dimensional Lorentzian space, $L^3$, with curvature zero. We show geometrical means and properties of $\mathbb{R}{\times}S_1^1-cylindrical$, $S^1{\times}L-cylindrical$ and $\mathbb{R}{\times}H_0^1-cylindrical$ projections defined on $S_1^2$ to cylinders $\mathbb{R}{\times}S_1^1,\;S^1{\times}L$ and $\mathbb{R}{\times}H_0^1$, respectively, and orthographic and stereographic projections on $S_1^2$ to Lorentzian plane, $L^2$.