• Title/Summary/Keyword: pseudomonas putida

Search Result 298, Processing Time 0.036 seconds

Inhibitory Effects of Pepper Mild Mottle Virus Infection by Supernatants of Five Bacterial Cultures in Capsicum annuum L.

  • Venkata Subba Reddy, Gangireddygari;In-Sook, Cho;Sena, Choi;Ju-Yeon, Yoon
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.646-655
    • /
    • 2022
  • Pepper mild mottle virus (PMMoV), one of the most prevalent viruses in chili pepper (Capsicum annuum L.) is a non-enveloped, rod-shaped, single-stranded positive-sense RNA virus classified in the genus Tobamovirus. The supernatants of five bacterial cultures (Pseudomonas putida [PP], Bacillus licheniformis [BLI], P. fluorescens [PF], Serratia marcescens [SER], and B. amyloliquifaciens [BA]) were analyzed to find novel antiviral agents to PMMoV in chili pepper. Foliar spraying with supernatants (1:1, v/v) obtained from Luria-Bertani broth cultures of PP, BLI, PF, SER, and BA inhibited PMMoV infection of chili pepper if applied before the PMMoV inoculation. Double-antibody sandwich enzyme-linked immunosorbent assay showed that treatments of five supernatants resulted in 51-66% reductions in PMMoV accumulation in the treated chili pepper. To identify key compounds in supernatants of PP, BLI, PF, SER, and BA, the supernatants were subjected to gas chromatography-mass spectrometry. The 24 different types of compounds were identified from the supernatants of PP, BLI, PF, SER, and BA. The compounds vary from supernatants of one bacterial culture to another which includes simple compounds-alkanes, ketones, alcohols, and an aromatic ring containing compounds. The compounds triggered the inhibitory effect on PMMoV propagation in chili pepper plants. In conclusion, the cultures could be used to further conduct tissue culture and field trial experiments as potential bio-control agents.

Antibacterial and Antioxidant Potential of Methanol Extract of Viburnum sargentii Seeds (Viburnum sargentii 종자 메탄올 추출물의 항균 및 항산화 활성에 대한 연구)

  • Patil, Maheshkumar Prakash;Seong, Yeong-Ae;Kang, Min-jae;Singh, Alka Ashok;Niyonizigiye, Irvine;Kim, Gun-Do;Lee, Jong-Kyu
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.671-678
    • /
    • 2019
  • Antibacterial and antioxidant activities of plant sources have attracted a wide range of interest across the world over the last decade. This is due to the growing concern for safe and alternative sources of antibacterial and antioxidant agents. In this study, we focused on the antibacterial and antioxidant activities and the chemical composition of a methanol extract from Viburnum sargentii seeds. The chemical composition was determined by gas chromatography-mass spectroscopy (GC-MS), and the antibacterial activity was screened by a disc diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the microbroth dilution and spread plate method, respectively. The V. sargentii extract showed growth inhibition activity on all tested Gram-positive (Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus saprophyticus) and Gram-negative (Escherichia coli, Pseudomonas putida, and Proteus vulgaris) pathogenic bacteria. The MIC and MBC ranged from 0.156~1.25 mg/ml for Gram-positive and 0.625~5.0 mg/ml for Gram-negative tested bacteria. The GC-MS results revealed the presence of several phytochemicals such as ${\beta}-sitosterol$ and vitamin E, which are known for their pharmacological applications. The antioxidant activities of V. sargentii extract were investigated by three different methods: the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay, the reducing power assay, and the total antioxidant capacity assay. The results showed a concentration-dependent antioxidant potential for all three used methods. In sum, our findings suggest that the methanol extract of V. sargentii seeds has the potential to inhibit the growth of pathogenic bacteria and provide antioxidant compounds, making it therefore worthy of further investigation.

A Study on the Effect of Metals on Bacteria Adhesion to Zeolite as Bio-media Materials (제올라이트를 이용한 생물막 형성시 미생물의 부착에 금속이 미치는 영향에 관한 연구)

  • Kim, Jae Keun;Park, In Sun;Park, Jae-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.303-310
    • /
    • 2009
  • Natural zeolite is widely used as sorbents and bio-media materials because it is cheap as well as it has efficient porous structures and large cation exchange. In this study, the effect of metal cations $(Na^+,\;Ca^{2+},\;Mg^{2+},\;Al^{3+})$ adsorbed to natural zeolite on the microorganism attachment was investigated. Metal-modified zeolites (MMZ) were prepared with 0.01 M, 0.02 M and 0.1 M NaCl, $CaCl_2$, $MgCl_2$ and $AlCl_3$ solutions respectively, which concentrations were equivalent to 10%, 20% and 100% of cation exchange capacity (CEC) of natural zeolite. Pseudomonas putida was used as microorganism which was cultivated in Beef Extract Medium at $26^{\circ}C$. The microorganism attachment to MMZ was increased more than natural zeolite. The amount of bacterial adhesion to MMZ and natural zeolite were $Mg^{2+}>natural>Na^+>Al^{3+}>Ca^{2+}$ under 10% of CEC, $Mg^{2+}>Ca^{2+}>Al^{3+}>natural>Na^+$ under 20% of CEC and $Ca^{2+}>Mg^{2+}>natural>Al^{3+}>Na^+$ under 100% of CEC. Especially, Mg-modified zeolite (Mg-MZ) showed the highest amount of bacterial adhesion, which increased the microorganism attachment 60% higher than natural zeolite under 10% of CEC. However, the amount of bacterial adhesion was decreased as the concentration of metal cations modified to zeolite were increased, showing that the increased amounts were 60% under 10% of CEC, 50% under 20% of CEC and 10% under 100% of CEC in Mg-MZ. Additionally, the effect of $Mg^{2+}$ in solution on the bacterial adhesion was investigated in order to compare it with the effect of $Mg^{2+}$ adsorbed to zeolite. The maximum quantity of bacterial adhesion to Mg-MZ was not different from the amount of microorganism attachment to the natural zeolite when $Mg^{2+}$ solution was added.

Local Shape Analysis of the Hippocampus using Hierarchical Level-of-Detail Representations (계층적 Level-of-Detail 표현을 이용한 해마의 국부적인 형상 분석)

  • Kim Jeong-Sik;Choi Soo-Mi;Choi Yoo-Ju;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.555-562
    • /
    • 2004
  • Both global volume reduction and local shape changes of hippocampus within the brain indicate their abnormal neurological states. Hippocampal shape analysis consists of two main steps. First, construct a hippocampal shape representation model ; second, compute a shape similarity from this representation. This paper proposes a novel method for the analysis of hippocampal shape using integrated Octree-based representation, containing meshes, voxels, and skeletons. First of all, we create multi-level meshes by applying the Marching Cube algorithm to the hippocampal region segmented from MR images. This model is converted to intermediate binary voxel representation. And we extract the 3D skeleton from these voxels using the slice-based skeletonization method. Then, in order to acquire multiresolutional shape representation, we store hierarchically the meshes, voxels, skeletons comprised in nodes of the Octree, and we extract the sample meshes using the ray-tracing based mesh sampling technique. Finally, as a similarity measure between the shapes, we compute $L_2$ Norm and Hausdorff distance for each sam-pled mesh pair by shooting the rays fired from the extracted skeleton. As we use a mouse picking interface for analyzing a local shape inter-actively, we provide an interaction and multiresolution based analysis for the local shape changes. In this paper, our experiment shows that our approach is robust to the rotation and the scale, especially effective to discriminate the changes between local shapes of hippocampus and more-over to increase the speed of analysis without degrading accuracy by using a hierarchical level-of-detail approach.

Effect of External Factors on Heavy Metal Accumulation in the Cell of Heavy Metal-Tolerant Microorganisms (중금속내성균의 중금속 축적에 미치는 외부요인의 영향)

  • Cho, Ju-Sik;Lee, Hong-Jae;Lee, Won-Kyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.124-129
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri possessing the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewater and mine wastewater polluted with various heavy metals. The effect of several external factors, such as temperature, pH and heavy metal compounds on heavy metal accumulation in the cells was investigated. The amount of heavy metal accumulation into cells according to the kind of heavy metal compound was slightly increased in the case of the heavy metal compound with -nitrate group, but generally, there is little change according to the kind of compound in the amount of heavy metal accumulation. The amount of heavy metal accumulation according to the precultured time was increased in the case of the cell precultured for 24 hours, but generally the precultured time did not affect to the amount of heavy metal accumulation. Heavy metal accumulation into cells was affected by several external factors, such as temperature and pH. The optimum temperature and optimum pH of the accumulation of heavy metal into cells were $20{\sim}37^{\circ}C$ and pH $6{\sim}8$, respectively. By increasing the concentration of each heavy metal-tolerant microorganism in the solution, the total amount of heavy metal accumulated was increased, whereas the amount of heavy metal accumulated per cell(mg, heavy metal/g, dry cells) was decreased. These results indicated that the amount of heavy metal accumulated was not proportional to the concentration of microorganisms.

  • PDF

Influence of Competing Ions and Metabolic Inhibitors on Heavy Metal Accumulation in the Cell of Heavy Metal-Tolerant Microorganisms (중금속내성균의 중금속 축적에 미치는 경쟁이온 및 대사저해제의 영향)

  • Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.142-148
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri possessing the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The effect of competing ions and metabolic inhibitors on heavy metal accumulation in the cells was investigated. Heavy metal accumulation into cells was drastically decreased in the presence of competing cation, $Al^{3+}$, and also decreased, at a lesser extent, in the presence of competing anions, $CO_3\;^{2-}$ and $PO_4\;^{2-}$. But heavy metal accumulation was not influenced generally in the presence of the other rations and anions. The accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was remarkably decreased in the presence of metabolic inhibitors, but the accumulation of Pb by Pb-tolerant microorganism was little affected in the presence of metabolic inhibitors. These results suggested that the accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was concerned with the biological activity depending on energy, and the accumulation of Pb by Pb-tolerant microorganism depended on not the biological activity but the physical adsorption on the cell surface. Each heavy metal-tolerant microorganism also exhibited some ability to accumulate the other heavy metals in solution containing equal concentrations of cadmium, lead, zinc and copper, when measured at 48 hours after inoculation of the microorganisms, but the accumulation rates were somewhat low as compared to the accumulation rates of heavy metal fitting to each tolerance. These results suggested that the accumulation of each heavy metal by each heavy metal-tolerant microorganism was a selective accumulation process.

  • PDF

PCR Detection of Terephthalic Acid Degrading Comamonas testosteroni in Soil (PCR을 이용한 토양 중 Terephthalic Acid 분해 Comamonas testosteroni의 검출)

  • 이종훈;강동주;홍연표
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.177-181
    • /
    • 2003
  • Eleven bacterial strains which are able to utilize terephthalic acid as a carbon and an energy source for growth were isolated from the soil of 7 water quality evaluation points in Kyonggi area of Korea. Phthalic acid isomer degrading activity of the isolates from the 4 contaminated points was higher than those from the 3 clean points. Among 11 isolates, 4 isolates which have high terephthalic acid degrading activity and degrade two phthalic acid isomers were identified by partal 16S rDNA sequence determination. One of them was identified as Pseudomonas putida, and the others as Comamonas testosteroni. Thus a large number of phthalic acid isomer degrading bacteria in domestic soil were inferred as C. testosteroni. On the basis of these results, the PCR detection of C. testosteroni in soil was applied to monitor soil contamination by phthalic acid isomers. The DNA of C. test-osteroni extracted from 4 g soil was directly detected by PCR with C. testosteroni specific primer pair. The amount of PCR products was different according to sampling sites and more PCR products were obtained from contaminated sites than those from clean sites (Gulpo-chun>Anyang-chun>Hwangguji-chun>Shin-chun>Huk-chun>Pukhan-river>Kapyeong-chun). This result was coincided with that of the viable cell counts for terephthalic acid degrading bacteria.

Effects of Dietary Probiotic on Performance, Noxious Gas Emission and Microflora Population on the Cecum in Broiler (복합 생균제 첨가가 육계 생산성, 유해가스 발생량 및 맹장내 균총에 미치는 영향)

  • Ko, Y.D.;Sin, J.H.;Kim, S.C.;Kim, Y.M.;Park, K.D.;Kim, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.559-568
    • /
    • 2003
  • This study was carried out to investigate the effect of probiotics on the performance, nutrients digestibility, noxious gas emission and microflora population on the cecum of broilers. A total of 120 broilers, consisted of 4 treatments X 3 replicates X 10 broilers per replicates, were fed the experimental diets containing 0, 0.1, 0.3 and 0.5% probiotics for 5 weeks. Broilers fed the diets containing 0.1 and 0.3% probiotic had higher (p<0.05) body weight gain and feed conversion than those of the others from the 3rd to 4th week. Broilers fed 0.3% probiotic had higher (p<0.05) body weight gain and feed conversion than those of the other levels from the 5th to 6th week. Broilers fed the diets containing 0.1% and 0.3% probiotic had higher (p<0.05) body weight gain and feed conversion than those of the others from the 2nd to 6th week. Dry matter digestibility was significantly (p<0.05) improved with 0.3% probiotic. Emission of ammonia and sulfate hydrogen gas was significantly (p<0.05) decreased at 6th week. However, there was no (p<0.05) difference at the levels of 0, 0.1, 0.3 and 0.5% at the 4th weeks. There was an increase in the lactobacillus sp, but there was a decrease in the microflora population of coliforms in the cecum of broiler with 0.1% and 0.3% probiotics. These results indicated that the compound probiotics of 0.1${\sim}$0.3% were effective in the body weight gain, feed conversion, nutrients digestibility, noxious gas emission and microflora population on the cecum in broilers.