• Title/Summary/Keyword: pseudo-exponential circuits

Search Result 2, Processing Time 0.021 seconds

Novel Low-Power High-dB Range CMOS Pseudo-Exponential Cells

  • De La Cruz Blas, Carlos A.;Lopez-Martin, Antonio
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.732-738
    • /
    • 2006
  • In this paper, novel CMOS pseudo-exponential circuits operating in a class-AB mode are presented. The pseudo-exponential approximation employed is based on second order equations. Such terms are derived in a straightforward way from the inherent nonlinear currents of class-AB transconductors. The cells are appropriate to be integrated in portable equipment due to their compactness and very low power consumption. Measurement results from a fabricated prototype in a 0.5 ${\mu}m$ technology reveal a range of 45 dB with errors lower than ${\pm}0.5$ dB, a power consumption of 100 ${\mu}W$, and an area of 0.01 $mm^2$.

  • PDF

A Delta-Sigma Fractional-N Frequency Synthesizer for Quad-Band Multi-Standard Mobile Broadcasting Tuners in 0.18-μm CMOS

  • Shin, Jae-Wook;Kim, Jong-Sik;Kim, Seung-Soo;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • A fractional-N frequency synthesizer supports quadruple bands and multiple standards for mobile broadcasting systems. A novel linearized coarse tuned VCO adopting a pseudo-exponential capacitor bank structure is proposed to cover the wide bandwidth of 65%. The proposed technique successfully reduces the variations of KVCO and per-code frequency step by 3.2 and 2.7 times, respectively. For the divider and prescaler circuits, TSPC (true single-phase clock) logic is extensively utilized for high speed operation, low power consumption, and small silicon area. Implemented in $0.18-{\mu}m$ CMOS, the PLL covers $154{\sim}303$ MHz (VHF-III), $462{\sim}911$ MHz (UHF), and $1441{\sim}1887$ MHz (L1, L2) with two VCO's while dissipating 23 mA from 1.8 V supply. The integrated phase noise is 0.598 and 0.812 degree for the integer-N and fractional-N modes, respectively, at 750 MHz output frequency. The in-band noise at 10 kHz offset is -96 dBc/Hz for the integer-N mode and degraded only by 3 dB for the fractional-N mode.