• Title/Summary/Keyword: pseudo-anti commuting

Search Result 3, Processing Time 0.017 seconds

REAL HYPERSURFACES WITH ∗-RICCI TENSORS IN COMPLEX TWO-PLANE GRASSMANNIANS

  • Chen, Xiaomin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.975-992
    • /
    • 2017
  • In this article, we consider a real hypersurface of complex two-plane Grassmannians $G_2({\mathbb{C}}^{m+2})$, $m{\geq}3$, admitting commuting ${\ast}$-Ricci and pseudo anti-commuting ${\ast}$-Ricci tensor, respectively. As the applications, we prove that there do not exist ${\ast}$-Einstein metrics on Hopf hypersurfaces as well as ${\ast}$-Ricci solitons whose potential vector field is the Reeb vector field on any real hypersurfaces.

HOPF HYPERSURFACES OF THE HOMOGENEOUS NEARLY KÄHLER 𝕊3 × 𝕊3 SATISFYING CERTAIN COMMUTING CONDITIONS

  • Xiaomin, Chen;Yifan, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1567-1594
    • /
    • 2022
  • In this article, we first introduce the notion of commuting Ricci tensor and pseudo-anti commuting Ricci tensor for Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3 and prove that the mean curvature of hypersurface is constant under certain assumptions. Next, we prove the nonexistence of Ricci soliton on Hopf hypersurface with potential Reeb vector field, which improves a result of Hu et al. on the nonexistence of Einstein Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3.

Real Hypersurfaces in the Complex Projective Space with Pseudo Ricci-Bourguignon Solitions

  • Doo Hyun Hwang;Young Jin Suh
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.3
    • /
    • pp.435-459
    • /
    • 2024
  • First, we give a complete classification of pseudo Ricci-Bourguignon soliton on real hypersurfaces in the complex projective space ℂPn = SUn+1/S(U1·Un). Next, as an application, we give a complete classification of gradient pseudo Ricci-Bourguignon soliton on real hypersurfaces in the complex projective space ℂPn.