• Title/Summary/Keyword: pseudo second order

Search Result 431, Processing Time 0.027 seconds

Fabrication of Iron Oxide Nanotubes by Anodization for Phosphorus Adsorption in Water (양극산화 공정을 이용한 Iron Oxide Nanotubes의 제조 및 수중 인 흡착)

  • Lee, Won-Hee;Lim, Han-Su;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.691-698
    • /
    • 2016
  • This study was carried out to investigate the characterization of iron oxide nanotubes (INTs) by anodization method and applied adsorption isotherms and kinetic models for phosphate adsorption. SEM analysis was conducted to examine the INTs surface formation. Further XRD and XPS analysis were performed to observe the crystal structure of INTs before and after phosphate adsorption. AFM analysis was conducted to determine of Fe foil surface before and after anodization. Phosphate stock solution for adsorption experiment was prepared by $KH_2PO_4$. The batch experiment was conducted using 20 ml phosphate stock solution and $40cm^3$ of INTs in 50 ml conical tube. Adsorption isotherms were applied Langmuir and Freundlich models for adsorption equilibrium test of INTs. Pseudo first order and pseudo second order models were applied for interpretation of adsorption rate by reaction time. The determination coefficient ($R^2$) values of Langmuir and Freundlich models were 0.9157 and 0.8876 respectively.

Removal of Cobalt Ion in Aqueous Solution Using Zeolitic Materials Synthesized from Jeju Volcanic Rocks (제주 화산석으로 합성한 제올라이트 물질을 이용한 용액 중의 Co 이온 제거)

  • Cho, Eunnim;Lee, Chang-Han;Kim, Moon il
    • Journal of Environmental Science International
    • /
    • v.30 no.9
    • /
    • pp.719-726
    • /
    • 2021
  • In this study, zeolitic materials were synthesized from Jeju Volcanic Rocks (JVR) using a fusion/hydrothermal method at NaOH/JVR ratios of 0.6 and 1.2. The crystallinities of the zeolitic materials at NaOH/JVR ratios of 0.6 and 1.2 were 25.5% and 59.0%, respectively. It was confirmed through the SEM image that the zeolitic materials covered the zeolite particle with a cube-shaped crystals. The Co ions adsorption by the zeolitic materials were to reach the adsorption equilibrium at 120 min. It could be better simulated in the pseudo-second order adsorption kinetic equation than in the pseudo-first order adsorption kinetic equation. The adsorption capacities (qm) of Co ions could be to estimate Langmuir isotherm better than Freundlich isotherm. The maximum adsorption capacities (qm) at NaOH/JVR ratios of 0.6 and 1.2 were 55.3 mg/g and 68.7 mg/g, respectively. It was found that there was a high correlation between the crystallinity of zeolitic materials and the adsorption capacity of Co ions adsorption.

Application of novel hybrid bioadsorbent, tannin/chitosan/sericite, for the removal of Pb(II) toxic ion from aqueous solution

  • Choi, Hee-Jeong;Yu, Sung-Whan
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2198-2206
    • /
    • 2018
  • We addressed the development of a novel, low-cost, and high-efficient material from hybrid materials, known as microcapsules. Microcapsules are a composite adsorbent made of a mixture of tannin, sericite and chitosan. The FT-IR analysis showed that the microcapsules contain hydroxyl, carboxyl, carbonyl, and amino groups, which play an important role in the adsorption of heavy metals. The microcapsules were able to remove 99% of Pb(II) in 30 min, and obtained a removal efficiency of more than (13-50)%, compared with the single adsorbents of tannin, chitosan, and sericite. In adsorption kinetic analysis, pseudo-second-order adsorption was more suitable than pseudo-first-order adsorption, and chemical adsorption did not limit the adsorption rate of Pb(II) ion. In isothermal adsorption, Langmuir adsorption was more suitable than Freundlich adsorption, and the maximum Langmuir adsorption capacity was 167.82 (mg/g). Furthermore, desorption and reusability studies, as well as the applicability of the material for wastewater treatment, demonstrated that microcapsules offer a promising hybrid material for the efficient removal of significant water pollutants, i.e., Pb(II) from aqueous solutions.

Adsorption of Azocarmine G dye on H2SO4-modified acacia sawdust

  • Celal Duran;Sengul Tugba Ozeken;Aslihan Yilmaz Camoglu;Duygu Ozdes
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • Presence of hazardous dyes in water cause considerable risks to the human health and environment due to their potential toxicity and ecological disruptions. Therefore, in the present research, to suggest an alternative method for the retention of toxic Azocarmine G (ACG) dye from aqueous media, natural and H2SO4-modified acacia sawdust were performed for the first time as low-cost and efficient adsorbents. Based on batch experiments, it was determined that the best conditions for the developed dye retention process were an initial pH of 2.0 and an equilibrium time of 240 min. Analysis of the data using both pseudo-first order and pseudo-second order kinetic models showed that the retention of ACG onto the adsorbents predominantly occurred through chemical adsorption. Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were employed to provide insights into the interaction between the adsorbate and adsorbent and the mechanism of the adsorption process. Maximum monolayer adsorption capacities of natural and H2SO4-modified acacia sawdust were determined as 28.01 and 64.90 mg g-1, respectively by Langmuir isotherm model. Results of the study clearly indicated that the modification of acacia sawdust with H2SO4 leads to a substantial increase in the adsorption performance of anionic dyes.

Identification of Volterra Kernels of Nonlinear Van do Vusse Reactor

  • Kashiwagi, Hiroshi;Rong, Li
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.109-113
    • /
    • 2002
  • Van de Vusse reactor is known as a highly nonlinear chemical process and has been considered by a number of researchers as a benchmark problem for nonlinear chemical process. Various identification methods for nonlinear system are also verified by applying these methods to Van de Vusse reactor. From the point of view of identification, only the Volterra kernel of second order has been obtained until now. In this paper, the authors show that Volterra kernels of nonlinear Van de Vusse reactor of up to 3rd order are obtained by use of M-sequence correlation method. A pseudo-random M-sequence is applied to Van de Vusse reactor as an input and its output is measured. Taking the crosscorrelation function between the input and the output, we obtain up to 3rd order Volterra kernels, which is the highest order Volterra kernel obtained until now for Van de Vusse reactor. Computer simulations show that when Van de Vusse chemical process is identified by use of up to 3rd order Volterra kernels, a good agreement is observed between the calculated output and the actual output.

Reduction of Alkyl Halides by Homonuclear Bridging Hydride, (μ-H)[(η$^5-MeCp)$Mn(CO)₂]₂-ppn+

  • 박용광;김영웅
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.269-273
    • /
    • 1996
  • Alkyl halides were reduced to the corresponding alkanes by the homonuclear bridging hydride, (μ-H)[(η5-MeCp)Mn(CO)2]2-PPN+ in THF at the elevated temperatures (40-60 ℃) under the pseudo first order reaction conditions where excess of alkyl halide was employed under nitrogen atmosphere. The reaction is of overall second order; first order with respect to [bridging hydride] and first order with respect to [alkyl halide] with the activation parameters, ΔH≠=28.93 kcal/mol and ΔS≠=17.95 e.u. The kinetic data, the ESR evidence and the reaction with cyclopropyl canbinyl bromide ensure that two possible reaction pathways are operable in this reaction: (1) concerted mechanism, and (2) single electron transfer pathway are in competition leading to the same product, the corresponding alkane.

Equilibrium, Kinetics and Thermodynamics Studies about Adsorption of Safranin by Granular Activated Carbon (입상 활성탄에 의한 Safranin의 흡착에 관한 평형, 동력학 및 열역학에 관한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.581-586
    • /
    • 2015
  • Adsorption of Safranin using granular activated carbon from aqueous solution was investigated. Batch experiments were carried out as a function of adsorbent dose, initial concentration, contact time and temperature. The equilibrium adsorption data were fitted to Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. Based on an estimated Langmuir separation factor, $R_L=0.183{\sim}0.254$ and a Freundlich separation factor, 1/n = 0.518~0.547, this process could be employed as an effective treatment method. Adsorption data were also modeled using the pseudo-first and second-order kinetic equations. It was shown that the pseudo-second-order kinetic equation could best describe the adsorption kinetics. The negative Gibbs free energy (${\Delta}G=-3.688{\sim}-7.220kJ/mol$) and positive enthalpy (${\Delta}H=33.126kJ/mol$) indicated that the adsorption process was spontaneous and endothermic.

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

Kinetic studies using a linear regression analysis for a sorption phenomenon of 17a-methyltestosterone by Salvinia cucullata in an active plant reactor

  • Adnan, Fahrizal;Thanasupsin, Sudtida Pliankarom
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.384-392
    • /
    • 2016
  • The aim of this study was to investigate the removal efficiency of $17{\alpha}$-methyltestosterone (MT) from aqueous solution by Salvinia cucullata Roxb. ex Bory in an active plant-based reactor with a specific focus on linear regression analysis for the sorption phenomena of MT onto the plant roots. A high performance liquid chromatographic method using UV detection (245 nm) was used to analyse the samples. The batch experiments of the active plant reactor (APR) were established to investigate the ability of Salvinia cucullata to remove MT from the liquid phase. The results revealed that 40% and 60% removal of MT from the liquid phase was observed at 5 min. and at 4 h, respectively. Salvinia cucullata can effectively remove MT from the aqueous solution in APRs. Kinetic studies revealed that the sorption phenomena of MT by Salvinia is best described using a linearized pseudo - second order model. Based on the kinetic parameters, it is likely that during the first 4 h of the contact (t = 0 to t = 4 h) sorption is the major driving mechanism of the disappearance of MT from aqueous solutions. However, at higher MT concentrations, diffusivity of MT has a significant effect on the migration of MT from the bulk stream to the root surface. The isotherm analysis revealed that the sorption kinetics favourably followed pseudo second-order. The results of isotherm analysis have indicated that the sorption of MT onto the root surfaces of Salvinia cucullata was favourable and almost irreversible.

Recovery of Nickel from sulfuric acid solution using Lewatit TP 220 ion exchange resin (황산용액(黃酸溶液)으로부터 이온교환수지(交換樹脂) Lewatit TP 220에 의한 니켈의 회수(回收))

  • Kang, Nam-Hee;Park, Kyung-Ho;Parhi, P.K.
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.28-36
    • /
    • 2011
  • The adsorption of nickel(Ni) from sulfuric acid solution was carried out by ion exchange method. A series of batch tests in synthetic solutions were carried out using Lewatit Monoplus TP 220 resin. The following experimental parameters, such as temperature, shaking rate, reaction time, pH, resin dosage and concentration of nickel ions etc. were investigated to establish the effective optimum conditions of nickel adsorption. The solution pH(2.0~5.0) and shaking rate had little effects on the adsorption of nickel and adsorption time of 72hours was required to reach equilibrium. The experimental results show a good agreement with Feundlich isotherm and pseudo-second order reaction. The adsorption behavior of Ni obtained from synthetic solution was compared with that of waste electroplating solution. Elution of nickel from loaded resin increased with increase in $H_2SO_4$ concentration.