• Title/Summary/Keyword: prototype model

Search Result 1,551, Processing Time 0.029 seconds

Modeling and Small-Signal Analysis of Controlled On-time Boost Power Factor Correction Circuit (도통 시간 제어형 승압형 역률보상회로의 모델링과 소신호 해석)

  • Park, Hyo-Gil;Hong, Seong-Su;Choe, Byeong-Jo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.364-370
    • /
    • 2000
  • A large-signal average model for the controlled on-time boost power factor correction(PFC) circuit is developed and subsequently linearized resulting in a small-signal model for the PFC circuit. Ac analyses are performed using the small-signal model, revealing new results new on small-signal dynamics of the PFC circuit. The analysis results and model predictions are confirmed with experimental measurements on 200W prototype PFC circuit.

  • PDF

Design and Implementation of a Content Model for m-Learning

  • Shon, Jin Gon;Kim, Byoung Wook
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.543-554
    • /
    • 2014
  • It is difficult for mobile learners to maintain a high level of concentration when learning content for more than an hour while they are on the move. Despite the attention span issue, many m-learning systems still provide their mobile learners with the same content once used in e-learning systems. This has called for an investigation to identify the suitable characteristics of the m-learning environment. With this in mind, we have conducted a survey in hopes of determining the requirements for developing more suitable m-learning content. Based on the results of the survey, we have developed a content model comprised of two types: a segment type and a supplement type. In addition, we have implemented a prototype system of the content model for Apple iPhones and Android smartphones in order to investigate a feasibility study of the model application.

Faults detection and identification for gas turbine using DNN and LLM

  • Oliaee, Seyyed Mohammad Emad;Teshnehlab, Mohammad;Shoorehdeli, Mahdi Aliyari
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • Applying more features gives us better accuracy in modeling; however, increasing the inputs causes the curse of dimensions. In this paper, a new structure has been proposed for fault detecting and identifying (FDI) of high-dimensional systems. This structure consist of two structure. The first part includes Auto-Encoders (AE) as Deep Neural Networks (DNNs) to produce feature engineering process and summarize the features. The second part consists of the Local Model Networks (LMNs) with LOcally LInear MOdel Tree (LOLIMOT) algorithm to model outputs (multiple models). The fault detection is based on these multiple models. Hence the residuals generated by comparing the system output and multiple models have been used to alarm the faults. To show the effectiveness of the proposed structure, it is tested on single-shaft industrial gas turbine prototype model. Finally, a brief comparison between the simulated results and several related works is presented and the well performance of the proposed structure has been illustrated.

High-Frequency Equivalent Circuit Model for Differential Mode Noise Analysis of DC-DC Buck Converter (DC-DC 벅 컨버터의 차동모드 노이즈 분석을 위한 고주파 등가회로 모델)

  • Shin, Juhyun;Kim, Woojung;Cha, Hanju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.473-480
    • /
    • 2020
  • In this paper, we proposed a high frequency equivalent circuit considering parasitic impedance components for differential noise analysis on the input stage during DC-DC buck converter switching operation. Based on the proposed equivalent circuit model, we presented a method to measure parasitic impedance parameters included in DC bus plate, IGBT, and PCB track using the gain phase method of a network analyzer. In order to verify the validity of this model, a DC-DC prototype consisting of a buck converter, a signal analyzer, and a LISN device, and then resonance frequency was measured in the frequency range between 150 kHz and 30 MHz. The validity of the parasitic impedance measurement method and the proposed equivalent model is verified by deriving that the measured resonance frequency and the resonance frequency of the proposed high frequency equivalent model are the same.

Thermal-hydro-mechanical Modelling for an Äspö prototype repository: analysis of thermal behavior (Äspö 원형 처분장에 대한 열-수리-역학적 모델링 연구: 열적 거동 해석)

  • Lee, Jae Owan;Birch, Kenneth;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.372-382
    • /
    • 2013
  • Thermal-hydro-mechanical (THM) modeling is a critical R&D issue in the performance and safety assessment of a high-level waste repository. With an $\ddot{A}$sp$\ddot{o}$ prototype repository, its thermal behavior was analyzed and then compared with in-situ experimental data for its validation. A model simulation was used to calculate the temperature distributions in the deposition holes, deposition tunnel, and surrounding host rock. A comparison of the simulation results with the experimental data was made for deposition hole DH-6, which showed that there was a temperature difference of $2{\sim}5^{\circ}C$ depending on the location of the measuring points, but there was a similar trend in the evolution curves of temperature as a function of time. It was expected that the coupled modeling of the thermal behavior with the hydro-mechanical behavior in the buffer and backfill of the $\ddot{A}$sp$\ddot{o}$ prototype repository would give a better agreement between the experimental and model calculation results.

Robust finite element model updating of a large-scale benchmark building structure

  • Matta, E.;De Stefano, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.371-394
    • /
    • 2012
  • Accurate finite element (FE) models are needed in many applications of Civil Engineering such as health monitoring, damage detection, structural control, structural evaluation and assessment. Model accuracy depends on both the model structure (the form of the equations) and the model parameters (the coefficients of the equations), and can be generally improved through that process of experimental reconciliation known as model updating. However, modelling errors, including (i) errors in the model structure and (ii) errors in parameters excluded from adjustment, may bias the solution, leading to an updated model which replicates measurements but lacks physical meaning. In this paper, an application of ambient-vibration-based model updating to a large-scale benchmark prototype of a building structure is reported in which both types of error are met. The error in the model structure, originating from unmodelled secondary structural elements unexpectedly working as resonant appendages, is faced through a reduction of the experimental modal model. The error in the model parameters, due to the inevitable constraints imposed on parameters to avoid ill-conditioning and under-determinacy, is faced through a multi-model parameterization approach consisting in the generation and solution of a multitude of models, each characterized by a different set of updating parameters. Results show that modelling errors may significantly impair updating even in the case of seemingly simple systems and that multi-model reasoning, supported by physical insight, may effectively improve the accuracy and robustness of calibration.

Development of A Hot Water Boiler System with A Rice Hull Furnace -Development of A Mathematical Model of Simulation- (왕겨 연소기(燃燒機)를 이용(利用)한 온수(温水)보일러 시스템 개발(開發)(II) -시뮬레이션 모형(模型) 개발(開發)-)

  • Park, S.J.;Noh, S.H.;Lee, Y.K.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.4
    • /
    • pp.30-37
    • /
    • 1988
  • A mathematical model was developed and programmed for computer simulation of a prototype hot water boiler system with rice hull furnace to predict the temperature distributions in the rice hull furnace and water tank, mass flow rate of hot water and thermal efficiency of the system under various operation and design conditions. The effects of feed rate of rice hull, thickness of the furnace wall, the type of heat exchanger, diameter of the water circulation pipe, etc, on the performance of the system can be evaluated with this model. The validity and simulation results of this model will be published in the next paper.

  • PDF

Enhanced Role-Based Access Control Administration Tool

  • Yenmunkong, Burin;Sathitwiriyawong, Chanboon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1360-1364
    • /
    • 2004
  • This paper propose an extended model for role-permission assignment based on locations called "Enhanced Role-Based Access Control (ERBAC03)". The proposed model is built upon the well-known RBAC model. Assigning permissions to role is considered too complex activity to accomplish directly. Instead we advocate breaking down this process into a number of steps. The concept of jobs and tasks is specifically introduced to facilitate role-permission assignment into a series of smaller steps. This model is suitable for any large organization that has many branches. Each branch consists of many users who work in difference roles. An administration tool has been developed to assist administrators with the administration of separation of duty requirements. It demonstrates how the specification of static requirements can be done based on "conflicting entities" paradigm. Static separation of duty requirements must be enforced in the administration environment. Finally, we illustrate how the ERBAC03 prototype is used to administer the separation of duty requirements.

  • PDF

UNIX-TUTOR : Intelligent Tutoring System for Teaching UNIX (UNIX-TUTOR : UNIX 교육을 위한 지능형 개인교사 시스템)

  • 정목동;김용란;김영성;신교선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.159-169
    • /
    • 1994
  • In this paper, we develop a prototype of ITS(Intelligent Tutoring Systems) system: UNIX TUTOR. It is designed for the purpose of teaching the UNIX beginners the principal concepts of UNIX and the shell commands using the communication between the student and the system. UNIX TUTOR engages the student in a two-way conversation that is mixed-initiative dialogue and attempts to teach the student UNIX via the Socratic method of guided discovery and the Coaching method interchangeably. And the student model is based on both the overlay model and the buggy model together. Thus TUTOR aims at teaching the students effectively whose levels of learning are different using various explanations which are determined by the student model. Because the knowledge representation for UNIX-TUTOR is based on the frame structure and the production rules it is easy to represent the complicated constructs. UNIX TUTOR is implemented on the SPARC station using X/Motif and C for cp command among 10 ones which were selected.

  • PDF

3-D Model-based UAV Path Generation for Visual Inspection of the Dome-type Nuclear Containment Building (UAV를 이용한 돔형 원자력 격납건물 외관조사를 위한 3차원 모델기반 비행 좌표 생성 방법)

  • Kim, Bong-Geun
    • Journal of KIBIM
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • This paper provides a method for generating flight path of Unmanned Aerial Vehicle (UAV) that is intended to be used in visual inspection of dome-type nuclear containment building. The method basically employs 3-D model to extract accurate location coordinates. Two basic route patterns that provide guide lines in defining moving locations were defined for each side wall and dome section of the containment. The route patterns support sequential capturing of images as well. In addition, several simple equations and an algorithm for calculation of the moving location on the route were developed on the basis of 3-D geometric characteristics of the containment building. A prototype computer program has been implemented to validate the proposed method, and a case study shows the method can visualize covering area in 3-D model as well.