• Title/Summary/Keyword: prototype model

Search Result 1,551, Processing Time 0.023 seconds

Economical run strategy for Korea High Speed Train Prototype (한국형 고속전철 경제운전 전략)

  • Lee Tae-Hyung;Park Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1381-1385
    • /
    • 2004
  • This paper presents a modelling methodology using fuzzy logic and train performance simulation for determining an economical running pattern for a high speed train which minimizes energy consumption under an given trip margin. The economical running pattern is defined with an economical maximum speed in traction phase, a speed at the end of coasting. As a case study, the simulation is carried out for an economical run of korea high speed train prototype, and the results of fuzzy model described.

  • PDF

Thermal Analysis of Solar Utilization Dryer for Redpepper Drying (고추건조를 통한 태양열 건조기의 열성분석)

  • Lee, Tai-Kyu;Cho, Suh-Hyun;Jo, Duk-Ki;Chea, Young-Hi;Auh, Paul J.
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.14-21
    • /
    • 1989
  • The heat transfer analysis is performed on unloaded solar utilization dryer, and thermal performance for a prototype model while drying red-pepper is also investigated. Results of theoretically derived thermal equations are in good agreement with experimental data. This constructed feature of the prototype demonstrates the excellent technical drying performance. Finally, this paper recommends the further work to develop advanced and economic solar utilization multi-purpose dryer.

  • PDF

Structural response relationship between scaled and prototype concrete load bearing systems using similarity requirements

  • Altunisik, Ahmet C.;Kalkan, Ebru;Basaga, Hasan B.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.385-397
    • /
    • 2018
  • This study is focused on the investigation for similitude the requirements between prototype and scaled models to determine the structural behavior of concrete load bearing systems. The scaling concept has been utilized in many engineering branches, has been assisted to engineers and scientists for obtain the behavior of the prototype by using scaled model. The scaling can be done for two purposes, either scaling up or scaling down depending upon the application. Because, scaled down models are the experimentation on scaled models is cheaper than huge structures. These models also provide facilities for experimental work. Similarity relationships between systems are created either by field equations of the system or by dimensional analysis. Within this study, similarity relationships were obtained by both methods. The similarity relations obtained are applied to different load bearing systems and it is determined that the similarity relation is a general expression. In this study, as an example, column, frame, cantilever beam and simple beam are chosen and 1/2, 1/5 and 1/10 scales are applied. The results are compared with the analytical results which are obtained by creating of the finite element models with SAP2000 software of different scaled load bearing systems. The analysis results of all systems are examined and it is determined that the scale factors are constant depending on the scale types for different load bearing systems.

Biomechanical Analysis of Lumbar Interspinous Process Fixators and Design of Miniaturization and Advanced Flexibility (요추부 극돌기간 고정기구의 생체역학적 해석과 소형화 및 유연성 향상 설계)

  • Park, Jung-Hong;Heo, Soon;Lee, Sung-Jae;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1509-1517
    • /
    • 2006
  • The intervertebral fusion was reported to increase the degeneration of the neighboring region. Recently, a new technique of inserting an interspinous process fixator has been introduced to minimize the degenerative change in the lumbar spine. This study analyzed biomechanical effects of the fixator in the lumbar spine, and designed a new prototype to improve flexibility of the fixator with a reduced size. The evaluation was based on the displacement, stiffness and von-Mises stress obtained from the mechanical test and finite element analysis. A finite element lumbar model of L1 to L5 was constructed. The finite element model was used to analyze intervertebral fusion, insertion of a commercial fixator and a new prototype. The range of motion of intervertebral segments and pressures at vertebral discs were calculated from FEA. The results showed that the stiffness of the prototype was reduced by 32.9% than that of the commercial one.

Prototype Model Building Reflecting Impact of National Territorial Policies towards the Interregional Migration (국토정책이 지역 간 인구이동에 미치는 영향에 대한 프로토타입 모형 개발)

  • Choi, Nam-Hee;Ahn, Yoo-Jeong;Lee, Jin-Hee;Kim, Kyeong-Mi;Song, Mi-Kyoung;Lee, Man-Hyung
    • Korean System Dynamics Review
    • /
    • v.11 no.4
    • /
    • pp.117-142
    • /
    • 2010
  • National territorial policies require a series of dynamic simulations, which would facilitate effectiveness measuring and forecasting works geared towards territorial policies under consideration or implementation. This paper aims at designing an integrated prototype for the proposed territorial policies. After the simulation exercises for the Ochang Industrial Complex(OIC) in Chungbuk Province, this study firstly finds meaningful mismatch phenomena between housing and population increases as the in-migration time lag seems inevitable even after the housing construction is in a mature state. Secondly, the OIC development exerts more significant impact on the number of employees than that of business units. Thirdly, in- and out-migration orders are different during the first and second stages of OIC development. That is, Chungbuk Province records the largest in terms of in-migration volume, followed by the Capital and Non-Capital Regions. Even though Chungbuk Province ranks the top position in the out-migration volume, the rank of the Capital and Non-Capital Regions is reversed: the our-migration volume towards the Non-Capital Region outruns that of the Capital Region.

  • PDF

Proposal and Manufacturing of Prototype of the CVT Model using Spring

  • Kwon, Young Woong;Park, Sung Cheon
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.256-262
    • /
    • 2021
  • In order for small electric vehicles to drive on hilly roads in Korea, methods to improve the climbing ability and power performance of vehicles should be taken. In order to improve the power performance of small electric vehicles, the performance of motors mounted on electric vehicles should be improved. However, if the performance of the motor is improved to improve the power performance of the electric vehicle, it is possible to lower the price competitiveness accordingly. In addition, the power consumption of the battery is rapidly increased to drive the high-performance motor, so in order to introduce the small electric vehicle into the domestic market, various problems must be overcome. In order to commercialize small electric vehicles that do not emit harmful exhaust gases to the human body in the hilly domestic terrain, it is effective to introduce a separate continuously variable transmission system that can improve the climbing ability and power transmission ability. In this study, we propose a proprietary model of continuously variable transmissions that can be applied to small electric vehicles. The proposed continuously variable transmission is equipped with a spring in the driving pulley and the driven pulley, and has the advantage of performing a shift that increases torque in a situation where the vehicle needs to increase torque when driving on a hill. In addition, the basic design for commercialization of the proposed continuously variable transmission was carried out, and the prototype manufactured and attached to the body of a small electric vehicle.

Fabrication of a Full-Scale Pilot Model of a Cost-Effective Sodium Nickel-Iron Chloride Battery Over 40 Ah

  • Lee, Dong-Geun;Ahn, Byeong-Min;Ahn, Cheol-Woo;Choi, Joon-Hwan;Lee, Dae-Han;Lim, Sung-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.398-405
    • /
    • 2021
  • To fabricate a full-scale pilot model of the cost-effective Na-(Ni,Fe)Cl2 cell, a Na-beta-alumina solid electrolyte (BASE) was developed by applying a one-step synthesis cum sintering process as an alternative to the conventional solid-state reaction process. Also, Fe metal powder, which is cheaper than Ni, was mixed with Ni metal powder, and was used for cathode material to reduce the cost of raw material. As a result, we then developed a prototype Na-(Ni,Fe)Cl2 cell. Consequently, the Ni content in the Na-(Ni,Fe)Cl2 cell is decreased to approximately (20 to 50) wt.%. The #1 prototype cell (dimensions: 34 mm × 34 mm × 235 mm) showed a cell capacity of 15.9 Ah, and 160.3 mAh g-1 (per the Ni-Fe composite), while the #2 prototype cell (dimensions: 50 mm × 50 mm × 335 mm) showed a cell capacity of 49.4 Ah, and 153.2 mAh g-1 at the 2nd cycle.

Development of a Compression Inner Layer Attachable to Dress Shirts for Gynecomastia Sufferers

  • Yoh, Eunah;Kwak, Ji-Hye
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.4
    • /
    • pp.624-637
    • /
    • 2022
  • The purpose of this study was to develop a compression inner layer (CIL) that can be attached to dress shirts for men who have gynecomastia (male breast enlargement). For this, we developed shirts with CIL prototypes based on the functional, expressive, and aesthetic (FEA) consumer needs model. The user-centered design principle guided the design process. Based on size measurements, in-depth interviews, and an online survey, the design requirements for dress shirts with a CIL were determined, and the prototype was developed. The dress shirts were constructed of polyester and spandex mixed materials, while the CIL was made of thin mesh fabric knitted from 80% polyester and 20% spandex. A CIL prototype was developed with a front zipper fastening to hold the upper body tight and compress the breast area. The CIL was attached by connecting a strap with snap buttons to loops sewn into the shoulder line of the dress shirt. In the trial and sensory test, the prototype helped breast size decrease while meeting target consumer needs. The outcomes of this study provide necessary insights to develop garments for gynecomastia patients.

Development of a System to Convert a 3D Mesh Model in STL Format into OBJ Format (STL 3D 형식의 메쉬 모델을 형식으로 OBJ 변환하는 시스템 개발)

  • Yeo, Changmo;Park, Chanseok;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 2018
  • The 3D mesh model is used in various fields, such as virtual reality, shape-based searching, 3D simulation, reverse engineering, 3D printing, and laser scanning. There are various formats for the 3D mesh model, but STL and OBJ are the most typical. Since application systems support different 3D mesh formats, developing technology for converting 3D mesh models from one format into another is necessary to ensure data interoperability among systems. In this paper, we propose a method to convert a 3D mesh model in STL format into the OBJ format. We performed the basic design of the conversion system and developed a prototype, then verified the proposed method by experimentally converting an STL file into an OBJ file for test cases using this prototype.

An Algorithm to Speed Up the Rapid Prototyping (쾌속조형의 속도를 향상시키기 위한 알고리즘)

  • Ko, Min-Suk;Chang, Min-Ho;Wang, Gi-Nam;Park, Sang-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.157-164
    • /
    • 2008
  • While developing physical prototype from CAD model, rapid prototyping mainly focuses on two key points reducing time and material consumption. So, we have to change from a traditional solid model to building a hollowed prototype. In this paper, a new method is presented to hollow out solid objects with uniform wall thickness to increase RP efficiency. To achieve uniform wall thickness, it is necessary to generate internal contour by slicing the offset model of an STL model. Due to many difficulties in this method, this paper proposes a new algorithm that computes internal contours computing offset model which is generated from external contour using wall thickness. Proposed method can easily compute the internal contour by slicing the offset surface defined by the sum of circle swept volumes of external contours without actual offset and the circle wept volumes. Internal contour existences are confirmed by using the external point. Presented algorithm uses the 2D geometric algorithm allowing RP implementation more efficient. Various examples have been tested with implementation of the algorithm, and some examples are presented for illustration.