• Title/Summary/Keyword: proton-exchange membrane fuel cell

Search Result 431, Processing Time 0.04 seconds

Problems and Solutions of Anion Exchange Membranes for Anion Exchange Membrane Fuel Cell (AEMFC) (음이온교환막연료전지용 음이온교환막의 문제점과 해결방안)

  • Son, Tae Yang;Kim, Tae Hyun;Kim, Hyoung Juhn;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.489-496
    • /
    • 2018
  • Fuel cells are seen as eco-friendly energy resources that convert chemical energy into electrical energy. However, proton exchange membrane fuel cells (PEMFCs) have problems such as the use of expensive platinum catalysts for the reduction of conductivity under high temperature humidification conditions. Thus, an anion exchange membrane fuel cell (AEMFC) is attracting a great attention. Anion exchange fuel cells use non - Pt catalysts and have the advantage of better efficiency because of the lower activation energy of the oxygen reduction reaction. However, there are various problems to be solved including problems such as the electrode damage and reduction of ion conductivity by being exposed to the carbon dioxide. Therefore, this mini review proposes various solutions for different problems of anion exchange fuel cells through a wide range of research papers.

Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.155-170
    • /
    • 2012
  • Fuel cells have been considered as alternative power generation system in the twenty-first century because of eco-friendly system, high power density and efficiency compare with petroleum engine system. Proton exchange membranes (PEMs) are the key components in fuel cell system. Currently, Nafion has been used in fuel cell system. However, Nafion has disadvantages such as low conductivity at high temperature and high cost. The researchers have focused to reach the high properties such as high proton conductivity, low permeability to fuel, good chemical/thermal stability, good mechanical properties and low manufacturing cost. Various methods have been developed for preparation of proton exchange membrane with high performance and commercialization of fuel cell system. The hybrid organic/inorganic membrane has the potentials to provide a unique combination of organic and inorganic properties with improved proton conductivity and mechanical property at high temperatures. So, this paper presents an overview of research trend for the composite membranes prepared by organic/inorganic system using various inorganic materials.

Dynamic Transient Phenomena of Proton Exchange Membrane Fuel Cell

  • Lee, Ying;Choi, Yong-Sung;Zhang, You-Sai;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.9-9
    • /
    • 2010
  • The proton exchange membrane fuel cell (PEMFC) holds great promise of clean power. However, in practical applications which use the PEMFC as the power source, the output voltage from the fuel cell undergoes transient response especially during acceleration and deceleration. This paper presents the relationships between the internal voltage drop, voltage of time constant, time constant of FC1 and FC2 (in series and in parallel) charge curves and discharge curves respectively.

  • PDF

Design and Analysis of Spider Bionic Flow Field for Proton Exchange Membrane Fuel Cell

  • Jian Yao;Fayi Ya;Xuejian Pei
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.38-50
    • /
    • 2023
  • Proton exchange membrane fuel cell (PEMFC) is a portable and clean power generation device. The structural arrangement of the flow field has a significant influence on the delivery efficiency of PEMFC. In this article, a new bionic flow channel is designed based on the inspiration of a spider shape. The branch channel width and branch corner are studied as the focus, and its simulation is carried out by the method of computational fluid dynamics (CFD). The results show that when channel width/rib width and corner of the branch are 1.5 and 130° , respectively, it is the best numerical combination and the cell comprehensive performance is excellent. The final model using this numerical combination is compared with the traditional flow channel model to verify the advancement of this scheme.

Current Status and Roles of Proton Exchange Membrane in Direct Methanol Fuel Cell Systems (직접메탄올연료전지 시스템에서의 수소이온고분자전해질막의 역할 및 현황)

  • Kim, Hae-Kyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.219-233
    • /
    • 2009
  • Mobile devices in the next generation such as camera, cell phone, network, Note PC, etc. require higher power and energy sources due to convergences of various functions. Direct methanol fuel cell (DMFC) has been focused as an attractive power source, but there are critical issues involved in its commercialization with regard to the core technologies of materials, components, and system. The requirements of key technologies are differentiated from applications and fuel supply methods. Here, the roles of the proton-conducting membrane are discussed and the current status of DMFC systems is discussed in terms of proton conductivity, methanol permeability, and water management. Materials such as perfluorinated and partially fluorinated membranes, hydrocarbon membranes, composite membranes, and other modified ionomers have been studied. These would explain the critical issues of DMFC and the role of membranes for commercialization.

Visualization of two-phae flow by using transparent Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지 가시화 장치를 이용한 이상유동 현상 관찰)

  • Lee, Dong-Ryul;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.374-377
    • /
    • 2009
  • The operating temperature of Proton Exchange Membrane Fuel Cell (PEMFC) usually has to be limited under $100^{\circ}C$ to maintain the proper ionic conductivity. Therefore, the only product from reaction, water, is in the liquid phase. Two-phase flow makes the flow phenomenon in the channel difficult to understand and predict. Water blocking in the PEMFC channel or the pore of Gas Diffusion Layer (GDL), called flooding, is known as the main effect of PEMFC degradation. To analyze two-phase flow, the PEMFC with transparent acrylic plate was used. Two-phase flow patterns were observed by varying the current density. When the PEMFC is mounted horizontally, water in the cathode is mainly transported on the interface between the channel and GDL.

  • PDF

Phosphoric Acid-doped SDF-F/poly(VI-co-MPS)/PTFE Membrane for a High Temperature Proton Exchange Membrane Fuel Cell

  • Lee, Jong-Won;Yi, Cheol-Woo;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1902-1906
    • /
    • 2011
  • Sulfonated poly(fluorinated arylene ether)s (SDF-F)/poly[(N-vinylimidazole)-co-(3-methacryloxypropyl-trimethoxysilane)] (poly(VI-co-MPS))/poly(tetrafluoroethylene) (PTFE) is prepared for a high temperature proton exchange membrane fuel cell (PEMFC). The reaction of the membrane with phosphoric acid forms silicate phosphor, as a chemically bound proton carrier, in the membrane. Thus-formed silicate phosphor, nitrogen in the imidazole ring, and physically bound phosphoric acid act as proton carriers in the membrane. The physico-chemical and electrochemical properties of the membrane are investigated by various analytical tools. The phosphoric acid uptake and proton conductivity of the SDF-F/poly(VI-co-MPS)/PTFE membrane are higher than those of SDF-F/PVI/PTFE. The power densities of cells with SDF-F/poly(VI-co-MPS)/PTFE membranes at 0.6 V are 286, 302, and 320 mW $cm^{-2}$ at 150, 170, and 190 $^{\circ}C$, respectively. Overall, the SDFF/poly(VI-co-MPS)/PTFE membrane is one of the candidates for anhydrous HT-PEMFCs with enhanced mechanical strength and improved cell performance.

Dynamic Transient Phenomena of a Proton Exchange Membrane Fuel Cell

  • Lee, Ying;Choi, Yong-Sung;Zhang, You-Sai;Lee, Kyung-Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.530-533
    • /
    • 2010
  • The proton exchange membrane fuel cell (PEMFC) holds great promise of clean power. However, in practical applications which use the PEMFC as the power source, the output voltage from the fuel cell undergoes a transient response especially during acceleration and deceleration. This paper presents the relationships between the charge curves of the internal voltage rise, discharge curves of the internal voltage drop, the voltage with a time constant $V_{\tau}$ and finally, the load and time constant $\tau$ of $FC_1$ and $FC_2$, connected both in series and in parallel.

Study on Transient Response of a Unit Proton Exchange Membrane Fuel Cell with an Aged Gas Diffusion Layer (내구성능저하된 기체확산층이 고분자전해질 연료전지의 과도응답성능에 미치는 영향 연구)

  • Cho, Junhyun;Ha, Tahun;Park, Jaeman;Oh, Hwanyeong;Min, Kyoungdoug;Jyoung, Jy-Young;Lee, Eunsook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.76.2-76.2
    • /
    • 2010
  • The gas diffusion layer is the key component of the proton exchange membrane fuel cell because it directly affect to the mass transport mechanism and dynamic behavior of the cell. In this study, the effects of GDL aging on the transient response of the PEM fuel cell is systematically investigated using current step transient response analysis under different stoichiometric ratios and humidity conditions. With GDLs aged by the accelerated stress test, the effects of hydrophobicity and structural changes due to carbon loss in the GDL on the transient response of PEM fuel cells are determined. The degraded GDLs that had uneven hydrophobicity distributions cause local water flooding inside the GDL and induce lower and unstable voltage responses after load changes.

  • PDF

Performance of Large Electrode Single Cell for Proton-Exchange-Membrane Fuel Cells (고체고분자 연료전지용 대면적 단위전지의 특성)

  • Chun, Y.G.;Kim, C.S.;Peck, D.H.;Jung, D.H.;Shin, D.R.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1255-1257
    • /
    • 1997
  • In order to obtain key technologies for a kW class internal humidifying proton-exchange-membrane fuel cell (PEMFC) a single cell with a large electrode area has been designed and manufactured and the performance of large area membrane/electrode assemblies (MEAs) has been evaluated by using the single cell. A small area MEA made of commercial E-TEK electrode and Nafion 117 membrane showed a performance of 0.7V, $300mA/cm^2$ whereas large area MEA made of catalyst layer on carbon support and Nafion 117 showed a lower performance. To improve the performance of large MEA direct coating of catalyst was carried out on the membrane using a screen printer.

  • PDF