• Title/Summary/Keyword: proton beam

Search Result 266, Processing Time 0.028 seconds

Dosimetry by Using EBT2 Film for Total Skin Electron Beam Therapy (TSET) (전신 피부 전자선 치료(TSET)에서 EBT2 필름을 사용한 선량측정)

  • Hwang, Ui-Jung;Rah, Jeong-Eun;Jeong, Ho-Jin;Ahn, Sung-Hwan;Kim, Dong-Wook;Lee, Sang-Yeob;Lim, Young-Gyung;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Park, Sung-Young;Pyo, Hong-Ryull;Chung, Weon-Kuu
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.60-69
    • /
    • 2010
  • For treatment of Total Skin Electron beam Therapy (TSET), measurement of dose at various conditions is need on the contrary to usual radiotherapy. When treating TSET with modified Stanford technique based on linear accelerator, the energy of treatment electron beam, the spatial dose distribution and the actual doses deposited on the surface of the patient were measured by using EBT2. The measured energy of the electron beam was agreed with the value that measured by ionization chamber, and the spatial dose distribution at the patient position and the doses at several point on the patient's skin could be easily measured by EBT2 film. The dose on the patient that was measured by EBT2 film showed good agreement with the data measured simultaneously by TLD. With the results of this study, it was proven that the EBT2 film can be one of the useful dosimeter for TSET.

Tackling range uncertainty in proton therapy: Development and evaluation of a new multi-slit prompt-gamma camera (MSPGC) system

  • Youngmo Ku;Sehoon Choi;Jaeho Cho;Sehyun Jang;Jong Hwi Jeong;Sung Hun Kim;Sungkoo Cho;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3140-3149
    • /
    • 2023
  • In theory, the sharp dose falloff at the distal end of a proton beam allows for high conformal dose to the target. However, conformity has not been fully achieved in practice, primarily due to beam range uncertainty, which is approximately 4% and varies slightly across institutions. To address this issue, we developed a new range verification system prototype: a multi-slit prompt-gamma camera (MSPGC). This system features high prompt-gamma detection sensitivity, an advanced range estimation algorithm, and a precise camera positioning system. We evaluated the range measurement precision of the prototype for single spot beams with varying energies, proton quantities, and positions, as well as for spot-scanning proton beams in a simulated SSPT treatment using a phantom. Our results demonstrated high accuracy (<0.4 mm) in range measurement for the tested beam energies and positions. Measurement precision increased significantly with the number of protons, achieving 1% precision with 5 × 108 protons. For spot-scanning proton beams, the prototype ensured more than 5 × 108 protons per spot with a 7 mm or larger spot aggregation, achieving 1% range measurement precision. Based on these findings, we anticipate that the clinical application of the new prototype will reduce range uncertainty (currently approximately 4%) to 1% or less.

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy

  • Lee, Chaeyeong;Lee, Sangmin;Chung, Kwangzoo;Han, Youngyih;Chung, Yong Hyun;Kim, Jin Sung
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.162-168
    • /
    • 2016
  • Proton therapy is increasingly being actively used in the treatment of cancer. In contrast to photons, protons have the potential advantage of delivering higher doses to the cancerous tissue and lower doses to the surrounding normal tissue. However, a range shifter is needed to degrade the beam energy in order to apply the pencil beam scanning technique to tumors located close to the minimum range. The secondary neutrons are produced in the beam path including within the patient's body as a result of nuclear interactions. Therefore, unintended side effects may possibly occur. The research related to the secondary neutrons generated during proton therapy has been presented in a variety of studies worldwide, since 2007. In this study, we measured the magnitude of the secondary neutron dose depending on the location of the detector and the use of a range shifter at the beam nozzle of the proton scanning mode, which was recently installed. In addition, the production of secondary neutrons was measured and estimated as a function of the distance between the isocenter and detector. The neutron dose was measured using WENDI-II (Wide Energy Neutron Detection Instruments) and a Plastic Water phantom; a Zebra dosimeter and 4-cm-thick range shifter were also employed as a phantom. In conclusion, we need to consider the secondary neutron dose at proton scanning facilities to employ the range shifter reasonably and effectively.

Proton Beam Sensitivity of Basidiospore and Mycelium in Pleurotus ostreatus (느타리버섯 포자와 균사체의 양성자 빔 조사에 대한 민감도)

  • Kwon, Hye-Jin;Kong, Won-Sik
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.34-38
    • /
    • 2006
  • To assess the effects of proton beam on radiation sensitivity of the basidiospore and mycelium of oyster mushroom (Pleurotus ostreatus), the $D_{10}$ values and $L_{50}$ (lethal 50%) values were analysed. By the proton beam radiation, the survival rate and germination rates increased at the dose of $10\;Gy{\sim}100\;Gy$ and then decreased significantly over 500 Gy. $L_{50}$ values of basidiospore and mycelium of Pleurotus ostreatus were over 500 Gy and 400 Gy, respectively. $D_{10}$ values were calculated from linear regression formulae ($D_{10}\;=\;-1/slope(b)$, y = a + bx) as 750 Gy and 1,250 Gy, respectively. Based on our experiment, the optimum dose of proton beam as a mutation source would be between from 500 Gy to 750 Gy for basidiospores and from 400 Gy to 1000 Gy for mycelium of oyster mushroom.

SRF LINAC FOR FUTURE EXTENSION OF THE PEFP

  • Kim, Han-Sung;Kwon, Hyeok-Jung;Seol, Kyung-Tae;Jang, Ji-Ho;Cho, Yong-Sub
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.247-254
    • /
    • 2014
  • A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

Geometric Calibration of Cone-beam CT System for Image Guided Proton Therapy (영상유도 양성자치료를 위한 콘빔 CT 재구성 알고리즘: 기하학적 보정방법에 관한 연구)

  • Kim, Jin-Sung;Cho, Min-Kook;Cho, Young-Bin;Youn, Han-Bean;Kim, Ho-Kyung;Yoon, Myoung-Geun;Shin, Dong-Ho;Lee, Se-Byeung;Lee, Re-Na;Park, Sung-Yong;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2008
  • According to improved radiation therapy technology such as IMRT and proton therapy, the accuracy of patient alignment system is more emphasized and IGRT is dominated research field in radiation oncology. We proposed to study the feasibility of cone-beam CT system using simple x-ray imaging systems for image guided proton therapy at National Cancer Center. 180 projection views ($2,304{\times}3,200$, 14 bit with 127 ${\mu}m$ pixel pitch) for the geometrical calibration phantom and humanoid phantoms (skull, abdomen) were acquired with $2^{\circ}$ step angle using x-ray imaging system of proton therapy gantry room ($360^{\circ}$ for 1 rotation). The geometrical calibration was performed for misalignments between the x-ray source and the flat-panel detector, such as distances and slanted angle using available algorithm. With the geometrically calibrated projection view, Feldkamp cone-beam algorithm using Ram-Lak filter was implemented for CBCT reconstruction images for skull and abdomen phantom. The distance from x-ray source to the gantry isocenter, the distance from the flat panel to the isocenter were calculated as 1,517.5 mm, 591.12 mm and the rotated angle of flat panel detector around x-ray beam axis was considered as $0.25^{\circ}$. It was observed that the blurring artifacts, originated from the rotation of the detector, in the reconstructed toomographs were significantly reduced after the geometrical calibration. The demonstrated CBCT images for the skull and abdomen phantoms are very promising. We performed the geometrical calibration of the large gantry rotation system with simple x-ray imaging devices for CBCT reconstruction. The CBCT system for proton therapy will be used as a main patient alignment system for image guided proton therapy.

  • PDF

Correction of Prompt Gamma Distribution for Improving Accuracy of Beam Range Determination in Inhomogeneous Phantom

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Lee, Hyun Su;Kim, Young-su;Kim, Chan Hyeong;Shin, Dong Ho;Lee, Se Byeong;Jeong, Jong Hwi
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.207-217
    • /
    • 2017
  • For effective patient treatment in proton therapy, it is therefore important to accurately measure the beam range. For measuring beam range, various researchers determine the beam range by measuring the prompt gammas generated during nuclear reactions of protons with materials. However, the accuracy of the beam range determination can be lowered in heterogeneous phantoms, because of the differences with respect to the prompt gamma production depending on the properties of the material. In this research, to improve the beam range determination in a heterogeneous phantom, we derived a formula to correct the prompt-gamma distribution using the ratio of the prompt gamma production, stopping power, and density obtained for each material. Then, the prompt-gamma distributions were acquired by a multi-slit prompt-gamma camera on various kinds of heterogeneous phantoms using a Geant4 Monte Carlo simulation, and the deduced formula was applied to the prompt-gamma distributions. For the case involving the phantom having bone-equivalent material in the soft tissue-equivalent material, it was confirmed that compared to the actual range, the determined ranges were relatively accurate both before and after correction. In the case of a phantom having the lung-equivalent material in the soft tissue-equivalent material, although the maximum error before correction was 18.7 mm, the difference was very large. However, when the correction method was applied, the accuracy was significantly improved by a maximum error of 4.1 mm. Moreover, for a phantom that was constructed based on CT data, after applying the calibration method, the beam range could be generally determined within an error of 2.5 mm. Simulation results confirmed the potential to determine the beam range with high accuracy in heterogeneous phantoms by applying the proposed correction method. In future, these methods will be verified by performing experiments using a therapeutic proton beam.

Development of Manual Multi-Leaf Collimator for Proton Therapy in National Cancer Center (국립암센터의 양성자 치료를 위한 수동형 다엽 콜리메이터 개발)

  • Lee, Nuri;Kim, Tae Yoon;Kang, Dong Yun;Choi, Jae Hyock;Jeong, Jong Hwi;Shin, Dongho;Lim, Young Kyung;Park, Jeonghoon;Kim, Tae Hyun;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • Multi-leaf collimator (MLC) systems are frequently used to deliver photon-based radiation, and allow conformal shaping of treatment beams. Many proton beam centers currently make use of aperture and snout systems, which involve use of a snout to shape and focus the proton beam, a brass aperture to modify field shape, and an acrylic compensator to modulate depth. However, it needs a lot of time and cost of preparing treatment, therefore, we developed the manual MLC for solving this problem. This study was carried out with the intent of designing an MLC system as an alternative to an aperture block system. Radio-activation and dose due to primary proton beam leakage and the presence of secondary neutrons were taken into account during these iterations. Analytical calculations were used to study the effects of leaf material on activation. We have fabricated tray model for adoption with a wobbling snout ($30{\times}40cm^2$) system which used uniform scanning beam. We designed the manual MLC and tray and can reduce the cost and time for treatment. After leakage test of new tray, we upgrade the tray with brass and made the safety tool. First, we have tested the radio-activation with usually brass and new brass for new manual MLC. It shows similar behavior and decay trend. In addition, we have measured the leakage test of a gantry with new tray and MLC tray, while we exposed the high energy with full modulation process on film dosimetry. The radiation leakage is less than 1%. From these results, we have developed the design of the tray and upgrade for safety. Through the radio-activation behavior, we figure out the proton beam leakage level of safety, where there detects the secondary particle, including neutron. After developing new design of the tray, it will be able to reduce the time and cost of proton treatment. Finally, we have applied in clinic test with original brass aperture and manual MLC and calculated the gamma index, 99.74% between them.

Non volatile memory device using mobile proton in gate insulator by hydrogen neutral beam treatment

  • Yun, Jang-Won;Jang, Jin-Nyeong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.192.1-192.1
    • /
    • 2015
  • We demonstrated the nonvolatile memory functionality of nano-crystalline silicon (nc-Si) and InGaZnOxide (IGZO) thin film transistors (TFTs) using mobile protons that are generated by very short time hydrogen neutral beam (H-NB) treatment in gate insulator (SiO2). The whole memory fabrication process kept under $50^{\circ}C$ (except SiO2 deposition process; $300^{\circ}C$). These devices exhibited reproducible hysteresis, reversible switching, and nonvolatile memory behaviors in comparison with those of the conventional FET devices. We also executed hydrogen treatment in order to figure out the difference of mobile proton generation between PECVD and H-NB CVD that we modified. Our study will further provide a vision of creating memory functionality and incorporating proton-based storage elements onto a probability of next generation flexible memorable electronics such as low power consumption flexible display panel.

  • PDF