• Title/Summary/Keyword: proteome analysis

Search Result 318, Processing Time 0.021 seconds

Differential Expression of Kidney Proteins in Streptozotocin-induced Diabetic Rats in Response to Hypoglycemic Fungal Polysaccharides

  • Hwang, Hye-Jin;Baek, Yu-Mi;Kim, Sang-Woo;Kumar, G. Suresh;Cho, Eun-Jae;Oh, Jung-Young;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2005-2017
    • /
    • 2007
  • Diabetic nephropathy remains a major cause of morbidity and mortality in the diabetic population and is the leading cause of end-stage renal failure. Despite current therapeutics including intensified glycemic control and blood pressure lowering agents, renal disease continues to progress relentlessly in diabetic patients, albeit at a lower rate. Since synthetic drugs for diabetes are known to have side effects, fungal mushrooms as a natural product come into preventing the development of diabetes. Our previous report showed the hypoglycemic effect of extracellular fungal polysaccharides (EPS) in streptozotocin (STZ)-induced diabetic rats. In this study, we analyzed the differential expression patterns of rat kidney proteins from normal, STZ-induced diabetic, and EPS-treated diabetic rats, to discover diabetes-associated proteins in rat kidney. The results of proteomic analysis revealed that up to 500 protein spots were visualized, of which 291 spots were differentially expressed in the three experimental groups. Eventually, 51 spots were statistically significant and were identified by peptide mass fingerprinting. Among the differentially expressed renal proteins, 10 were increased and 16 were decreased significantly in diabetic rat kidney. The levels of different proteins, altered after diabetes induction, were returned to approximately those of the healthy rats by EPS treatment. A histopathological examination showed that EPS administration restored the impaired kidney to almost normal architecture. The study of protein expression in the normal and diabetic kidney tissues enabled us to find several diabetic nephropathy-specific proteins, such as phospholipids scramblase 3 and tropomyosin 3, which have not been mentioned yet in connection with diabetes.

Comparison of Three Substrates (Casein, Fibrin, and Gelatin) in Zymographic Gel

  • Choi, Nack-Shick;Yoon, Kab-Seog;Lee, Jin-Young;Han, Kyoung-Yoen;Kim, Seung-Ho
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.531-536
    • /
    • 2001
  • Three zymographic techniques using casein, fibrin, and gelatin as substrates in SDS-PAGE were compared based on three aspects: (1) The proteolytic pattern of extracellular enzymes from the three bacterial strains, Bacillus sp. DJ-1, DJ-2, and DJ-3. (2) The enzymatic sensitivity of their activity on zymogram gels. (3) The stability of stained zymogram gels with Coomassie brilliant blue in the destaining solution. There was no significant difference on the pattern of extracellular enzymes from the three strains. The bands in the fibrin gel were clearer and more distinct from the extensive destaining process. It was also shown that the gelatin gel revealed the highest enzymatic sensitivity among the three gels, based on the densitometric analysis. In the casein gel, a trace that could be mistaken as a proteolytic band appeared around 40-50 kDa.

  • PDF

Constructing Proteome Reference Map of the Porcine Jejunal Cell Line (IPEC-J2) by Label-Free Mass Spectrometry

  • Kim, Sang Hoon;Pajarillo, Edward Alain B.;Balolong, Marilen P.;Lee, Ji Yoon;Kang, Dae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1124-1131
    • /
    • 2016
  • In this study, the global proteome of the IPEC-J2 cell line was evaluated using ultra-high performance liquid chromatography coupled to a quadrupole Q Exactive Orbitrap mass spectrometer. Proteins were isolated from highly confluent IPEC-J2 cells in biological replicates and analyzed by label-free mass spectrometry prior to matching against a porcine genomic dataset. The results identified 1,517 proteins, accounting for 7.35% of all genes in the porcine genome. The highly abundant proteins detected, such as actin, annexin A2, and AHNAK nucleoprotein, are involved in structural integrity, signaling mechanisms, and cellular homeostasis. The high abundance of heat shock proteins indicated their significance in cellular defenses, barrier function, and gut homeostasis. Pathway analysis and annotation using the Kyoto Encyclopedia of Genes and Genomes database resulted in a putative protein network map of the regulation of immunological responses and structural integrity in the cell line. The comprehensive proteome analysis of IPEC-J2 cells provides fundamental insights into overall protein expression and pathway dynamics that might be useful in cell adhesion studies and immunological applications.

High Throughput Proteomic Approaches for the Dissection of Light Signal Transduction Pathways in Photosynthetic Cyanobacterium Synechocystis sp.PCC 6803

  • Chung Young-Ho;Park Young Mok
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.203-205
    • /
    • 2002
  • Light is an environmental signal that regulates photomovement and main energy source of photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803 (Syn6803). Syn6803 is a popular model system for study of plant functional genomics. In this report, we adopted 2D gel based proteomics study to investigate proteins related with the light absorption and photo-protection in Syn6803. More than 700 proteins were detected on the SDS-gels stained with silver nitrate. Several proteins showing different expression level under various light conditions were identified with MALDI-TOF Mass spectrometry. As a comparison, we also conducted ICAT-based proteome study using WT and cphl (cyanobacterial phytochrome 1) mutant. A cphl deletion led to changes in the expression of proteins involved in translation, photosynthesis including photosystem and CO2 fixation, and cellular regulation. We are currently involved in TAP-tagging method to study protein-protein interactions in search for the molecular component involved in the light signal transduction of Syn6803 photomovement.

  • PDF

Proteome Analysis of Amniotic Fluid by gradient 2-D PAGI (Gradient 2-D PAGE를 이용한 양수 프로테옴 분석)

  • 이은희;김재찬;변상요
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.35-38
    • /
    • 2003
  • Analysis of proteome in amniotic fluid was performed by 2-D PAGE (polyacrylamide gel electrophoresis). Proteins in amniotic fluid were separated by centrifugation and solubilized in buffer solution for IEF, using an IPG strip of pH 4-7L. Both a homogeneous slab gel of 12.5% and a gradient gel of 8-18%, were used. After 2-D PAGE, spots were stained with silver nitrate and picked up for in-gel digestion. Digested peptides were analyzed by MALDI-TOF and proteins were further identifical. More protein spots were detected in the gradient gels and a protein not previously reported was identified.

A Systematic Proteome Study of Seed Storage Proteins from Two Soybean Genotypes

  • Cho, Seong-Woo;Kwon, Soo-Jeong;Roy, Swapan Kumar;Kim, Hong-Sig;Lee, Chul-Won;Woo, Sun Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.359-363
    • /
    • 2014
  • Soybean seed is a good source of plant protein in human consumables such as baby formula and protein concentrate. The seeds contain an abundance of storage proteins, namely ${\beta}$-conglycin and glycinin that account for ~ 70-80% of the total seed protein content. Proteome profiling has been proved to be an efficient way that can help us to investigate the seed storage proteins. In the present study, the seeds were removed from the pods and the cotylendonary tissues were separated from the testa for proteome analysis in order to investigate the seed storage proteins. A systematic proteome profiling was conducted through one-dimensional gel electrophoresis followed by MALDI-TOF-TOF mass spectrometry in the seeds (cotyledonary tissue) of soybean genotypes. Two dimensional gels stained with CBB, a total of 10 proteins were identified and analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. A total of ten proteins such as glycinin Gy4 precursor, glycinin G3 precursor, glycinin G1 precursor, glycinin chain A2B1a precursor, glycinin chain A2B1a precursor were identified in our investigation. However, the glycinin subunit may be considered to play important roles in soybean breeding and biochemical characterization. In addition, the improved technique will be useful to dissect the genetic control of glycinin expression in soybean.

Proteome analysis of developing mice diastema region

  • Chae, Young-Mi;Jin, Young-Joo;Kim, Hyeng-Soo;Gwon, Gi-Jeong;Sohn, Wern-Joo;Kim, Sung-Hyun;Kim, Myoung-Ok;Lee, Sang-Gyu;Suh, Jo-Young;Kim, Jae-Young
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.337-341
    • /
    • 2012
  • Different from humans, who have a continuous dentition of teeth, mice have only three molars and one incisor separated by a toothless region called the diastema in the hemi mandibular arch. Although tooth buds form in the embryonic diastema, they regress and do not develop into teeth. In this study, we evaluated the proteins that modulate the diastema formation through comparative analysis with molar-forming tissue by liquid chromatography-tandem mass spectroscopy (LC-MS/MS) proteome analysis. From the comparative and semi-quantitative proteome analysis, we identified 147 up- and 173 down-regulated proteins in the diastema compared to the molar forming proteins. Based on this proteome analysis, we selected and evaluated two candidate proteins, EMERIN and RAB7A, as diastema tissue specific markers. This study provides the first list of proteins that were detected in the mouse embryonic diastema region, which will be useful to understand the mechanisms of tooth development.

Application and perspectives of proteomics in crop science fields (작물학 분야 프로테오믹스의 응용과 전망)

  • Woo Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.12-27
    • /
    • 2004
  • Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant sciences. Plant proteomics would be most useful when combined with other functional genomics tools and approaches. A combination of microarray and proteomics analysis will indicate whether gene regulation is controlled at the level of transcription or translation and protein accumulation. In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is a most prevalent technique to identify rapidly a large of proteins in proteome analysis. However, the conventional Western blotting/sequencing technique us still used in many laboratories. As a first step to efficiently construct protein data-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein spots are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins (i. e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 30% of total rice cDNA have been deposited in the database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that fumed out to be calreticulin, gibberellin-binding protein, which is ribulose-1,5-bisphosphate carboxylase/oxygenase activate in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins (http://genome .c .kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Recently, we are separated proteins from grain filling and seed maturation in rice to perform ESI-Q-TOF/MS and MALDI-TOF/MS. This experiment shows a possibility to easily and rapidly identify a number of 2-DE separated proteins of rice by ESI-Q-TOF/MS and MALDI-TOF/MS. Therefore, the Information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful in the plant molecular breeding. Also, information from our study could provide a venue to plant breeder and molecular biologist to design their research strategies precisely.

  • PDF