• Title/Summary/Keyword: proteome

Search Result 454, Processing Time 0.022 seconds

A Systematic Proteome Study of Seed Storage Proteins from Two Soybean Genotypes

  • Cho, Seong-Woo;Kwon, Soo-Jeong;Roy, Swapan Kumar;Kim, Hong-Sig;Lee, Chul-Won;Woo, Sun Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.359-363
    • /
    • 2014
  • Soybean seed is a good source of plant protein in human consumables such as baby formula and protein concentrate. The seeds contain an abundance of storage proteins, namely ${\beta}$-conglycin and glycinin that account for ~ 70-80% of the total seed protein content. Proteome profiling has been proved to be an efficient way that can help us to investigate the seed storage proteins. In the present study, the seeds were removed from the pods and the cotylendonary tissues were separated from the testa for proteome analysis in order to investigate the seed storage proteins. A systematic proteome profiling was conducted through one-dimensional gel electrophoresis followed by MALDI-TOF-TOF mass spectrometry in the seeds (cotyledonary tissue) of soybean genotypes. Two dimensional gels stained with CBB, a total of 10 proteins were identified and analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. A total of ten proteins such as glycinin Gy4 precursor, glycinin G3 precursor, glycinin G1 precursor, glycinin chain A2B1a precursor, glycinin chain A2B1a precursor were identified in our investigation. However, the glycinin subunit may be considered to play important roles in soybean breeding and biochemical characterization. In addition, the improved technique will be useful to dissect the genetic control of glycinin expression in soybean.

Quantitative Proteogenomics and the Reconstruction of the Metabolic Pathway in Lactobacillus mucosae LM1

  • Pajarillo, Edward Alain B.;Kim, Sang Hoon;Lee, Ji-Yoon;Valeriano, Valerie Diane V.;Kang, Dae-Kyung
    • Food Science of Animal Resources
    • /
    • v.35 no.5
    • /
    • pp.692-702
    • /
    • 2015
  • Lactobacillus mucosae is a natural resident of the gastrointestinal tract of humans and animals and a potential probiotic bacterium. To understand the global protein expression profile and metabolic features of L. mucosae LM1 in the early stationary phase, the QExactiveTM Hybrid Quadrupole-Orbitrap Mass Spectrometer was used. Characterization of the intracellular proteome identified 842 proteins, accounting for approximately 35% of the 2,404 protein-coding sequences in the complete genome of L. mucosae LM1. Proteome quantification using QExactiveTM Orbitrap MS detected 19 highly abundant proteins (> 1.0% of the intracellular proteome), including CysK (cysteine synthase, 5.41%) and EF-Tu (elongation factor Tu, 4.91%), which are involved in cell survival against environmental stresses. Metabolic pathway annotation of LM1 proteome using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that half of the proteins expressed are important for basic metabolic and biosynthetic processes, and the other half might be structurally important or involved in basic cellular processes. In addition, glycogen biosynthesis was activated in the early stationary phase, which is important for energy storage and maintenance. The proteogenomic data presented in this study provide a suitable reference to understand the protein expression pattern of lactobacilli in standard conditions

High Throughput Proteomic Approaches for the Dissection of Light Signal Transduction Pathways in Photosynthetic Cyanobacterium Synechocystis sp.PCC 6803

  • Chung Young-Ho;Park Young Mok
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.203-205
    • /
    • 2002
  • Light is an environmental signal that regulates photomovement and main energy source of photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803 (Syn6803). Syn6803 is a popular model system for study of plant functional genomics. In this report, we adopted 2D gel based proteomics study to investigate proteins related with the light absorption and photo-protection in Syn6803. More than 700 proteins were detected on the SDS-gels stained with silver nitrate. Several proteins showing different expression level under various light conditions were identified with MALDI-TOF Mass spectrometry. As a comparison, we also conducted ICAT-based proteome study using WT and cphl (cyanobacterial phytochrome 1) mutant. A cphl deletion led to changes in the expression of proteins involved in translation, photosynthesis including photosystem and CO2 fixation, and cellular regulation. We are currently involved in TAP-tagging method to study protein-protein interactions in search for the molecular component involved in the light signal transduction of Syn6803 photomovement.

  • PDF

Proteome Approach as a Tool for the Efficient Separation of Seed Storage Proteins from Buckwheat

  • Cho, Seong-Woo;Kwon, Soo-Jeong;Roy, Swapan Kumar;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.29-32
    • /
    • 2015
  • Two-dimensional electrophoresis (2-DE) was executed to separate the seed storage proteins from the buckwheat. The proteins extracted from the whole seed proteins were better separated and observed in the use of lysis buffer. Using this method, the highly reproducible isoelectric focusing (IEF) can be obtained from polyacrylamide gels, and IEF from the polyacrylamide gel at all the possible pH range (5.0-8.0) was more easily separated than IPG (immobilized pH gradient) gels. The polyacrylamide gels in the first dimension in 2-DE was used to separate and identify a number of whole seed proteins in the proteome analysis. In this new apparatus using 2-DE, 27cm in length of plate coated with polyacrylamide gel was used and the experiment was further investigated under the various conditions.

Proteome Analysis of Amniotic Fluid by gradient 2-D PAGI (Gradient 2-D PAGE를 이용한 양수 프로테옴 분석)

  • 이은희;김재찬;변상요
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.35-38
    • /
    • 2003
  • Analysis of proteome in amniotic fluid was performed by 2-D PAGE (polyacrylamide gel electrophoresis). Proteins in amniotic fluid were separated by centrifugation and solubilized in buffer solution for IEF, using an IPG strip of pH 4-7L. Both a homogeneous slab gel of 12.5% and a gradient gel of 8-18%, were used. After 2-D PAGE, spots were stained with silver nitrate and picked up for in-gel digestion. Digested peptides were analyzed by MALDI-TOF and proteins were further identifical. More protein spots were detected in the gradient gels and a protein not previously reported was identified.

Proteome Analysis of Apicidin- Treated Human Cervix Cancer Cells

  • Shim , Won-Jo;Cho, Eun-jung;Lee, Hoi-Young;Hong , Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.323.1-323.1
    • /
    • 2002
  • Apicidin [cyclo(N-O-methyl-l -tryptophanyl-L -isoleucinyl-D-pipecolinyl-L-2-amino-8-oxodecano y)]. a histone deacetylase inhibitor. has been shown to cause growth arrest and morphological change of cancer cells. resulting from the alternation of protein expression. such as p21WAF1/Cip1 and gelsolin. However. proteome of altered by apicidin are poorly studied. In this study. we used a functional proteornics approach to identify the proteome altered by apicidin in Hela cells at 24hr post-treatment. (omitted)

  • PDF

A New Removal Method of Glutelin Storage Proteins for the Proteome Study of Non-Glutelin Proteins in Rice Seeds (벼종자 미랑 단백질의 프로테오믹스 연구를 위한 글루테린 저장 단백질의 제거방법)

  • Woo, Sun-Hee;Kim, Se-Young;Kim, Tae-Seon;Cho, Seong-Woo;Cho, Kun;Chung, Keun-Yook;Kim, Sun-Lim;Cho, Yong-Gu;Kim, Hong-Sig;Song, Boem-Heon;Lee, Chul-Won;Jong, Seung-Keun;Park, Young-Mok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.92-102
    • /
    • 2006
  • Abundant proteins often cause problems in proteome study. Glutelin family proteins (hereafter referred to glutelin) are present in rice proteome sample as over-whelming constituents with very high abundance. In order to increase the number of identified proteins in rice proteome study, we developed a newly improved method for sample preparation through the removal of glutelin. When the protein samples from rice seed were extracted by the conventional trichloroacetic acid (TCA) extraction method, glutelin accounts for about 60% of total rice seed proteins in SDS gels. Using our new water extraction method, glutelin consists of only about 10% of total proteins. After analyzing on a two-dimensional gel electrophoresis (2-DE), 937 protein spots were detected using the conventional TCA extraction method. On the other hand, 1240 proteins could be seen using the new water extraction method. The selectivity for non-glutelin and less abundant protein by the water extraction method was also confirmed by ESI-Q/TOF mass spectrometry analysis. Thus, the new water extraction method developed here can be efficiently used to study the proteome analysis of rice storage seed.

Application and perspectives of proteomics in crop science fields (작물학 분야 프로테오믹스의 응용과 전망)

  • Woo Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.12-27
    • /
    • 2004
  • Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant sciences. Plant proteomics would be most useful when combined with other functional genomics tools and approaches. A combination of microarray and proteomics analysis will indicate whether gene regulation is controlled at the level of transcription or translation and protein accumulation. In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is a most prevalent technique to identify rapidly a large of proteins in proteome analysis. However, the conventional Western blotting/sequencing technique us still used in many laboratories. As a first step to efficiently construct protein data-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein spots are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins (i. e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 30% of total rice cDNA have been deposited in the database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that fumed out to be calreticulin, gibberellin-binding protein, which is ribulose-1,5-bisphosphate carboxylase/oxygenase activate in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins (http://genome .c .kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Recently, we are separated proteins from grain filling and seed maturation in rice to perform ESI-Q-TOF/MS and MALDI-TOF/MS. This experiment shows a possibility to easily and rapidly identify a number of 2-DE separated proteins of rice by ESI-Q-TOF/MS and MALDI-TOF/MS. Therefore, the Information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful in the plant molecular breeding. Also, information from our study could provide a venue to plant breeder and molecular biologist to design their research strategies precisely.

  • PDF