• Title/Summary/Keyword: proteins mobility

Search Result 92, Processing Time 0.029 seconds

Physiological and Biochemical Studies on the Adult Hemolymph proteins in Lepidoptera. 1. Appearance of Adult Specific Proteins in the Hemolymph of the Silkworm, Bombyx mori. (인시목 곤충의 성충체액단자질에 관한 생리성화학적 연구 1. 가잠의 성충특이체액단자질의 검출)

  • 성주일;문재유
    • Journal of Sericultural and Entomological Science
    • /
    • v.30 no.1
    • /
    • pp.20-24
    • /
    • 1988
  • Adult specific proteins, referred to as ASP-I(adult specific protein of slow mobility) and ASP-II(adult specific protein of slow mobility) at the pharate adult stage of the silkworm, Bombyx mori, were detected by polyacrylamide gel electrophoresis. The adult specific proteins (ASP-I and ASP-II) were defined as a kind of adult hemolymph proteins without sex specificity, and the was no variation in the respective electrophoretic mobility of ASP-I and of ASP-II among the forty-one silkworm varieties. tested.

  • PDF

Phosphorylation-Dependent Mobility Shift of Proteins on SDS-PAGE is Due to Decreased Binding of SDS

  • Lee, Chang-Ro;Park, Young-Ha;Kim, Yeon-Ran;Peterkofsky, Alan;Seok, Yeong-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2063-2066
    • /
    • 2013
  • While many eukaryotic and some prokaryotic proteins show a phosphorylation-dependent mobility shift (PDMS) on SDS-PAGE, the molecular mechanism for this phenomenon had not been elucidated. We have recently shown that the distribution of negatively charged amino acids around the phosphorylation site is important for the PDMS of some proteins. Here, we show that replacement of the phosphorylation site with a negatively charged amino acid results in a similar degree of the mobility shift of a protein as phosphorylation, indicating that the PDMS is due to the introduction of a negative charge by phosphorylation. Compared with a protein showing no shift, one showing a retarded mobility on SDS-PAGE had a decreased capacity for SDS binding. The elucidation of the consensus sequence (${\Theta}X_{1-3}{\Theta}X_{1-3}{\Theta}$, where ${\Theta}$ corresponds to an acidic function) for a PDMS suggests a general strategy for mutagenizing a phosphorylatable protein resulting in a PDMS.

The Alpha Subunit of Go Interacts with Brain Specific High Mobility Group Box Containing Protein

  • Park, Jung-Sik;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.405-411
    • /
    • 2006
  • Heterotrimeric GTP binding proteins (G proteins) mediate signal transduction generated by neurotransmitter and hormones. Among G-proteins, Go is classified as a member of the Go/Gi family and the most abundant heterotrimeric G protein in brain. Most of the mechanistic analyses on the activation of Go indicated its action to be mediated by the $G{\beta}{\gamma}$ dimer because downstream effectors for its ${\alpha}$ subunit have not been clearly defined. To determine the downstream effectors of alpha subunits of Go ($Go{\alpha}$), we used yeast two-hybrid system to screen $Go{\alpha}$ interacting partners in cDNA library from the human brain. A brain specific high mobility group box containing protein (BHX), A possible transcription factor, was identified as a $Go{\alpha}$ interacting protein. We confirmed interaction between $Go{\alpha}$ and BHX employing in vitro affinity binding assay. Moreover, active form of $Go{\alpha}$ preferentially interacts with BHX than inactive farm. Our findings indicate that $Go{\alpha}$ could modulate gene expression via interaction with BHX during neuronal or brain development.

  • PDF

Comparison of Exon-boundary Old and Young Domains during Metazoan Evolution

  • Lee, Byung-Wook
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.131-135
    • /
    • 2009
  • Domains are the building blocks of proteins. Exon shuffling is an important mechanism accounting for combination of a limited repertoire of protein domains in the evolution of multicellular species. A relative excess of domains encoded by symmetric exons in metazoan phyla has been presented as evidence of exon shuffling, and symmetric domains can be divided into old and new domains by determining the ages of the domains. In this report, we compare the spread, versatility, and subcellular localization of old and new domains by analyzing eight metazoan genomes and their respective annotated proteomes. We found that new domains have been expanding as multicellular organisms evolved, and this expansion was principally because of increases in class 1-1 domains amongst several classes of domain families. We also found that younger domains have been expanding in membranes and secreted proteins along with multi-cellular organism evolution. In contrast, old domains are located mainly in nuclear and cytoplasmic proteins. We conclude that the increasing mobility and versatility of new domains, in contrast to old domains, plays a significant role in metazoan evolution, facilitating the creation of secreted and transmembrane multidomain proteins unique to metazoa.

Optimized phos-tag mobility shift assay for the detection of protein phosphorylation in planta

  • Hussain, Shah;Nguyen, Nhan Thi;Nguyen, Xuan Canh;Lim, Chae Oh;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.322-327
    • /
    • 2018
  • Post-translational modification of proteins regulates signaling cascades in eukaryotic system, including plants. Among these modifications, phosphorylation plays an important role in modulating the functional properties of proteins. Plants perceive environmental cues that directly affect the phosphorylation status of many target proteins. To determine the effect of environmentally induced phosphorylation in plants, in vivo methods must be developed. Various in vitro methods are available but, unlike in animals, there is no optimized methodology for detecting protein phosphorylation in planta. Therefore, in this study, a robust, and easy to handle Phos-Tag Mobility Shift Assay (PTMSA) is developed for the in vivo detection of protein phosphorylation in plants by empirical optimization of methods previously developed for animals. Initially, the detection of the phosphorylation status of target proteins using protocols directly adapted from animals failed. Therefore, we optimized the steps in the protocol, from protein migration to the transfer of proteins to PVDF membrane. Supplementing the electrophoresis running buffer with 5mM $NaHSO_3$ solved most of the problems in protein migration and transfer. The optimization of a fast and robust protocol that efficiently detects the phosphorylation status of plant proteins was successful. This protocol will be a valuable tool for plant scientists interested in the study of protein phosphorylation.

Identification of Nuclear Factors that UV-crosslink to Rev-responsive Element RNA (UV조사에 의해 Rev-responsive element RNA와 결합하는 핵단백질인자의 확인)

  • 박희성;남용석
    • Journal of Life Science
    • /
    • v.7 no.3
    • /
    • pp.161-166
    • /
    • 1997
  • HIV-1 Rev protein plays an important role in regulating the expression of viral structural proteins. It allows the nuclear export and accumulation of unspliced and partially spliced viral mRNA in the cytoplasm. The Rev-responsive element RNA, present in the env gene, forms a higly ordered RNA secondary structure and is required for the Rev-mediated mRNA export. For this process to complete factor(s) are strongly suggested. From our experiments of electrophoretic mobility shift, UV-crosslinking and SDS/PAGE, RRE RNA was found to be recognized to several nuclear factors such as 36/37, 56, 41. 76, 150 kD proteins in the order of reactivity. Among them, 36/37 and 56 kD proteins are more reactive upon a brief UV treatment (5 min) and more persistent in the presence of high amount of nonspecific competitor, heparin. Certain nuclear protein9s) seemed to recognize the RRE RNA structure in competition with Rev to gel mobility shift assay.

  • PDF

Comparative Characterization of Four Calcium-Binding EF Hand Proteins from Opisthorchis viverrini

  • Emmanoch, Palida;Kosa, Nanthawat;Vichasri-Grams, Suksiri;Tesana, Smarn;Grams, Rudi;Geadkaew-Krenc, Amornrat
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.1
    • /
    • pp.81-86
    • /
    • 2018
  • Four isoforms of calcium binding proteins containing 2 EF hand motifs and a dynein light chain-like domain in the human liver fluke Opisthorchis viverrini, namely OvCaBP1, 2, 3, and 4, were characterized. They had molecular weights of 22.7, 21.6, 23.7, and 22.5 kDa, respectively and showed 37.2-42.1% sequence identity to CaBP22.8 of O. viverrini. All were detected in 2- and 4-week-old immature and mature parasites. Additionally, OvCaBP4 was found in newly excysted juveniles. Polyclonal antibodies against each isoform were generated to detect the native proteins in parasite extracts by Western blot analysis. All OvCaBPs were detected in soluble and insoluble crude worm extracts and in the excretory-secretory product, at approximate sizes of 21-23 kDa. The ion-binding properties of the proteins were analyzed by mobility shift assays with the divalent cations $Ca^{2+}$, $Mg^{2+}$, $Zn^{2+}$, and $Cu^{2+}$. All OvCaBPs showed mobility shifts with $Ca^{2+}$ and $Zn^{2+}$. OvCaBP1 showed also positive results with $Mg^{2+}$ and $Cu^{2+}$. As tegumental proteins, OvCaBP1, 2, and 3 are interesting drug targets for the treatment of opisthorchiasis.

The Effect of Lidocaine.HCl on the Fluidity of Native and Model Membrane Lipid Bilayers

  • Park, Jun-Seop;Jung, Tae-Sang;Noh, Yang-Ho;Kim, Woo-Sung;Park, Won-Ick;Kim, Young-Soo;Chung, In-Kyo;Sohn, Uy Dong;Bae, Soo-Kyung;Bae, Moon-Kyoung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.413-422
    • /
    • 2012
  • The purpose of this study is to investigated the mechanism of pharmacological action of local anesthetic and provide the basic information about the development of new effective local anesthetics. Fluorescent probe techniques were used to evaluate the effect of lidocaine HCl on the physical properties (transbilayer asymmetric lateral and rotational mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Lidocaine HCl increased the bulk lateral and rotational mobility of neuronal and model membrane lipid bilayes, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. Lidocaine HCl increased annular lipid fluidity in SPMV lipid bilayers. It also caused membrane proteins to cluster. The most important finding of this study is that there is far greater increase in annular lipid fluidity than that in lateral and rotational mobilities by lidocaine HCl. Lidocaine HCl alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that lidocaine, in addition to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membrane lipid.

The Effect of Dibucaine.HCl on the Physical Properties of Neuronal Membranes

  • Jang, Hye-Ock;Hyun, Cheol-Ho;Yoon, Jin-Hyeok;Kang, Yong-Gyu;Park, Sung-Min;Park, Young-Sik;Park, Jun-Seop;Ok, Jin-Seok;Lee, Dong-Hun;Bae, Moon-Kyung;Yun, Il
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.67-73
    • /
    • 2005
  • Fluorescent probe techniques were used to evaluate the effect of dibucaine.HCl on the physical properties (transbilayer asymmetric lateral mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(l-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Dibucaine.HCl increased the bulk lateral mobility, and annular lipid fluidity in SPMV lipid bilayers, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMV lipid bilayer induced by dibucaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral mobility of bulk SPMV lipid bilayer. It also caused membrane proteins to cluster. These effects of dibucaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of dibucaine.HCl.

  • PDF

The Effect of Ethanol on the Physical Properties of Neuronal Membranes

  • Bae, Moon-Kyoung;Jeong, Dong-Keun;Park, No-Soo;Lee, Cheol-Ho;Cho, Bong-Hye;Jang, Hye-Ock;Yun, Il
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.356-364
    • /
    • 2005
  • Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.