• Title/Summary/Keyword: protein-free medium

Search Result 167, Processing Time 0.023 seconds

Effects of Mifepristone and Tamoxifen on Calcium Modulation in DU-145 Prostate Cancer Cells (DU-145 전립선 암세포에 있어서 mifepristone과 tamoxifen이 칼슘조절에 미치는 영향)

  • Kim, Yeo-Reum;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1324-1331
    • /
    • 2010
  • Mifepristone (MIF) and Tamoxifen (TAM) have been used in the treatment of prostate cancer and breast cancer for more than a decade. MIF can induce apoptosis in both AR-positive and negative prostate cancer cells. Because of its pleiotropic ligand-receptor properties, TAM exerts cytotoxic activity in estrogen (ER)-positive and various ER.negative cancer cells. However, the molecular mechanisms of these two substances are not yet clear. In the present work, we report that the cytotoxic effects of MIF and TAM are due to the modulation of intracellular $Ca^{2+}$ level in DU-145, androgen-insensitive cells. When the cells were treated with micromolar concentrations of either MIF or TAM, the growth and viability were significantly decreased in a dose- and time-dependent manner. The apoptosis induced by MIF or TAM was further proved and analyzed by confocal laser scanning microscopy (CLSM) and fluorescence-activated cell sorting (FACS). In the cells cultivated in a normal 1.5 mM $Ca^{2+}$ medium, both MIF and TAM also induced an increase of the intracellular $Ca^{2+}$ level in a dose-dependent fashion. Since a change in calcium level could not be found in cells of the $Ca^{2+}$-free medium, the increase of intracellular $Ca^{2+}$ level might be due to an increase in extracellular calcium uptake. Our results show that the apoptotic effect was more prominent in TAM treatment compared to MIF treatment in DU-145 cells. The above findings might be due to the difference in the uppermost pathways of apoptosis induced by either MIF or TAM. When we checked the level of procaspase-8 activation, TAM showed minor level of activation, as opposed to MIF, which exerted strong activation. In both treatments, the levels of anti-apoptotic protein Bcl-2 decreased, and pro-apoptotic protein Bax level increased more than 2-fold. The activation of caspase-3, a key protease enzyme in the downstream pathway of apoptosis, was much higher in the cells treated with TAM, compared to the MIF treatment. The overall apoptotic activity shown in the present work was closely related to intracellular $Ca^{2+}$ concentration levels. Therefore, the cytotoxic activity induced by MIF and TAM might have been due to intracellular calcium modulation.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Insulin-like growth factor가 소장 점막 세포 증식에 미치는 영향

  • 윤정한
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 1995.11b
    • /
    • pp.11-34
    • /
    • 1995
  • Growth hormone (GH) plays a key role in regulating postnatal growth and can stimulate growth of animals by acting directly on specific receptors on the plasma membrane of tissues or indirectly through stimulating insulin-like growth factor (IGF)-I synthesis and secretion by the liver and other tissues. IGF-I and IGF-Ⅱ are polypeptides with structural similarity with proinsulin that stimulate cell proliferation by endocrine, paracrine and autocrine mechanisms. The initial event in the metabolic action of IGFs on target cells appears to be their binding to specific receptors on the plasma membrane. Current evidence indicates that the mitogenic actions of both IGFs are mediated primarily by binding to the type I IGF receptors, and that IGF action is also mediated by interactions with IGF-binding proteins (IGFBPs). Six distinct IGFBPs have been identified that are characterized by cell-specific interaction, transcriptional and post-translational regulation by many different effectors, and the ability to either potentiate or inhibit IGF actions. Nutritional deficiencies can have their devastating consequence during growth. Although IGF-I is the major mediator of GH's action on somatic growth, nutritional status of an organism is a critical regulator of IGF-I and IGFBPs. Various nutrient deficiencies result in decreased serum IGF-I levels and altered IGFBP levels, but the blood levels of GH are generally unchanged or elevated in malnutrition. Effects of protein, energy, vitamin C and D, and zinc on serum IGF and IGFBP levels and tissue mRNA levels were reviewed in the text. Multiple factors are involved in the regulation of intestinal epithelial cell growth and differentiation. Among these factors the nutritional status of individuals is the most important. The intestinal epithelium is an important site for mitogenic action of the IGFs in vivo, with exogenous IGF-I stimulating mucosal hyperplasia. Therefore, the IGF system appears to provide and important mechanism linking nutrition and the proliferation of intestinal epithelial cells. In order to study the detailed mechanisms by which intestinal mucosa is regulated, we have utilized IEC-6 cells, an intestinal epithelial cell line and Caco-2 cells, a human colon adenocarcinoma cell line. Like intestinal crypt cells analyzed in vivo or freshly isolated intestinal epithelial cells, IEC-6 cells and Caco-2 cells possess abundant quatities of both type Ⅰ and type Ⅱ IGF receptors. Exogenous IGFs stimulate, whereas addition of IGFBP-2 inhibits IEC-6 cell proliferation. To investigate whether endogenously secreted IGFBP-2 inhibit proliferation, IEC-6 cells were transfected with a full-length rat IGFBP-2 cDNA anti-sense expression construct. IEC-6 cells transfected with anti-sense IGFBP-2 protein in medium. These cells grew at a rate faster than the control cells indicating that endogenous IGFBP-2 inhibits proliferation of IEC-6 cells, probably by sequestering IGFs. IEC-6 cells express many characteristics of enterocyte, but do not undergo differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation after reaching confluency. We have demonstrated that Caco-2 cells produce IGF-Ⅱ, IGFBP-2, IGFBP-3, and an as yet unidentified 31,000 Mr IGFBP, and that both mRNA and peptide secretion of IGFBP-2 and IGFBP-3 increased, but IGFBP-4 mRNA and protein secretion decreased after the cells reached confluency. These changes occurred in parallel to and were coincident with differentiation of the cells, as measured by expression of sucrase-isomaltase. In addition, Caco-2 cell clones forced to overexpress IGFBP-4 by transfection with a rat IGFBP-4 cDNA construct exhibited a significantly slower growth rate under serum-free conditions and had increased expression of sucrase-isomaltase compared with vector control cells. These results indicate that IGFBP-4 inhibits proliferation and stimulates differentiation of Caco-2 cells, probably by inhibiting the mitogenic actions of IGFs.

  • PDF

Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377 (산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가)

  • Kim, Il-Sup;Yun, Hae-Sun;Yang, Ji-Young;Lee, Oh-Seok;Park, Heui-Dong;Jin, Ing-Nyol;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • Oxidative stress is a consequence of an imbalance of the defense system against cellular damage generated by reactive oxygen species (ROSs) such as superoxide anions (menadione; MD). Most organisms have evolved a variety of defense systems to protect cells from adverse conditions. In order to evaluate stress tolerance against oxidative stress generating MD, comparative analyses of antioxidant capacity, or free radical scavenger ability, were performed between S. cerevisiae KNU5377 (KNU5377) and three wild-type S. cerevisiae strains. In a medium containing 0.4 mM MD, the KNU5377 strain showed higher cell viability and antioxidant ability, and contained higher levels of trehalose, superoxide dismutase, thioredoxin system, glucose-6-phosphate dehydrogenase, and some heat shock proteins. The KNU5377 strain also produced a lower level of oxidative stress biomarker than the other three yeast strains. These results indicate that S. cerevisiae KNU5377 has a higher level of tolerance to oxidative stress due to the increased expression of cell rescue proteins and molecules, thus alleviating cellular damage more efficiently than other S. cerevisiae strains.

Antioxidant and Neuronal Cell Protective Effects of Methanol Extract from Schizandra chinensis using an in vitro System (In vitro system에서 오미자 메탄올 추출물의 항산화 및 신경세포 보호효과)

  • Kim, Ji-Hye;Jeong, Chang-Ho;Choi, Gwi-Nam;Kwak, Ji-Hyun;Choi, Sung-Gil;Heo, Ho-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.712-716
    • /
    • 2009
  • In this study, the antioxidant and neuronal cell protective effects of methanol extract from Schizandra chinensis were evaluated. The proximate composition and total phenolics content of the extract were as follows: 64.88% nitrogen free extract, 10.56% crude fiber, 10.22% moisture, 8.33% crude protein, 5.05% ash, 0.96% crude fat, and 83.04 mg/g of total phenolics. In assays the methanol extract of Schizandra chinensis presented ferric reducing/antioxidant power (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity in a dose-dependent manner. In a cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), the methanol extract showed protective effect against $H_2O_2$-induced neurotoxicity, and lactate dehydrogenase (LDH) release into medium was also inhibited by various concentrations of extracts (68-80%). Cell viability after treatment of the methanol extract was higher than that shown for vitamin C ($100\;{\mu}M$) using a neutral red uptake (NRU) assay. Therefore, these data suggest that the methanol extract of Schizandra chinensis may be useful for neurodegenerative diseases including Alzheimer's disease.

Hydrolysis of Agricultural Residues and Kraft Pulps by Xylanolytic Enzymes from Alkaliphilic Bacillus sp. Strain BK

  • Kaewintajuk Kusuma;Chon Gil-Hyong;Lee Jin-Sang;Kongkiattikajorn Jirasak;Ratanakhanokchai Khanok;Kyu Khin Lay;Lee John-Hwa;Roh Min-Suk;Choi Yun-Young;Park Hyun;Lee Yun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1255-1261
    • /
    • 2006
  • An alkaliphilic bacterium, Bacillus sp. strain BK, was found to produce extracellular cellulase-free xylanolytic enzymes with xylan-binding activity. Since the pellet-bound xylanase is eluted with 2% TEA from the pellet of the culture, they contain a xylan-binding region that is stronger than the xylan-binding xylanase of the extracellular enzyme. The xylanases had a different molecular weight and xylan-binding ability. The enzyme activity of xylanase in the extracellular fraction was 6 times higher than in the pellet-bound enzyme. Among the enzymes, xylanase had the highest enzyme activity. When Bacillus sp. strain BK was grown in pH 10.5 alkaline medium containing xylan as the sole carbon source, the bacterium produced xylanase, arabinofuranosidase, acetyl esterase, and $\beta$-xylosidase with specific activities of 1.23, 0.11, 0.06, and 0.04 unit per mg of protein, respectively. However, there was no cellulase activity detected in the crude enzyme preparation. The hydrolysis of agricultural residues and kraft pulps by the xylanolytic enzymes was examined at 50$^{\circ}C$ and pH 7.0. The rate of xylan hydrolysis in com hull was higher than those of sugarcane bagasse, rice straw, com cop, rice husk, and rice bran. In contrast, the rate of xylan hydrolysis in sugarcane pulp was 2.01 and 3.52 times higher than those of eucalyptus and pine pulp, respectively. In conclusion, this enzyme can be used to hydrolyze xylan in agricultural residues and kraft pulps to breach and regenerate paper from recycled environmental resources.

Effect of peptide on the mixed fermentation of Lactobacillus helveticus YM-1 and Streptococcus lactis $ML_3$ in skim milk (Lactobacillus helveticus YM-1과 Streptococcus lactis $ML_3$의 혼합발효에 미치는 peptide의 영향)

  • 박정길;류인덕;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.6
    • /
    • pp.487-493
    • /
    • 1986
  • Lactobacillus helveticus YM-1and Streptococcus lactis Ml$_3$ were inoculated together in reconstituted non-fat skim milk medium, and then their proteolytic activity and stimulatory compound for acid production were investigated. Significant difference between Lactobacillus helveticus YM-1 and Streptococcus lactis Ml$_3$was observed in the proteolytic activities. The proteolytic activity of Lactobacillus helveticus YM-1 and Streptococcus lactis Ml$_3$ was 105 $\mu\textrm{g}$/$m{\ell}$ and 30 $\mu\textrm{g}$/$m{\ell}$ when converted the amounts of hydrolysates of milk protein determined by Folin Ciocaleau phenol method into their tyrosine equivalent Stimulatory compounds in cell-free filtrate of Lactobacillus helveticus YM-1were identified as peptide with a molecular weight of approximately 4, 300 for the acid production by Streptococcus lactis Ml$_3$. Some kinds of amino acids, such as histidine, lysine, arginine and glutamic acid, were rich in acid hydrolysates of peptide. Among amino acids, histidine, glutamic acid and phenylalanine stimulated acid production, on the contrary isoleucine inhibited.

  • PDF

Effect of Carotenoids on the Growth of HT-29 Human Colon Cancer Cells (Carotenoids가 인체의 대장암 세포인 HT-29 세포의 증식에 미치는 영향)

  • ;;;;Frederick Khachik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.428-436
    • /
    • 2003
  • Epidemiological studies have observed a negative association between increased consumption of green and yellow vegetables and cancer incidence. These vegetables contain carotenoids, which are reported to exhibit anticarcinogenic effects. Overexpression of ErbB2 and ErbB3 genes is a frequent event in several human cancers. The present study was performed to determine whether $\alpha$-carotene, $\beta$-carotene, lutein, or lycopene inhibits cell growth and to assess such an effect is related to changes in the levels of the ErbB receptor family and tile ErbB3 receptor signaling pathway in HT-29 cells. HT-29 cells were cultured in serum-free medium in the presence of various concentrations (0~100 $\mu$M) of the individual carotenoids. $\alpha$ -Carotene and lycopene significantly inhibited cell growth in a dose-dependent manner, whereas lutein slightly inhibited cell growth and $\beta$-carotene increased cell growth. Lycopene is more potent than $\alpha$ -carotene in inhibiting HT-29 cell growth. Lycopene inhibited DNA synthesis and induced apoptosis of HT-29 cells. The ErbB3 ligand heregulin (HRG) increased cell growth but did not prevent the lycopene-induced inhibition of cell growth. Lycopene decreased ErbB2 protein levels in a dose-dependent manner. Immunoprecipitation/Western blot studies revealed that lycopene inhibited HRG-induced phosphorylation of ErbB3, recruitment of the 985 regulatory subunit of phosphatidylinositol 3-kinase (PI3K) to the ErbB3 receptor, and phosphorylation of Akt. These results indicate that downregulation of ErbB2/ErbB3/PI3K/Akt signaling may be one of the mechanisms by which lycopene inhibits HT-29 cell pro-liferation and induces apoptosis.

Regulatory Mechanisms of Angiotensin II on the $Na^+/H^+$ Antiport System in Rabbit Renal Proximal Tubule Cells. I. Stimulatory Effects of ANG II on $Na^+$ Uptake

  • Han, Ho-Jae;Koh, Hyun-Ju;Park, Soo-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.413-423
    • /
    • 1997
  • The importance of the kidney in the development of hypertension was first demonstrated by Goldblatt and his colleagues more than fifty years ago. Many hormones and other regulatory factors have been proposed to play a major role in the development of hypertension. Among these factors angiotensia II (ANG II) is closely involved in renal hypertension development since it directly regulates $Na^+$ reabsorption in the renal proximal tubule. Thus the aim of the present study was to examine signaling pathways of low dose of ANC II on the $Na^+$ uptake of primary cultured rabbit renal proximal tubule cells (PTCs) in hormonally defined seum-free medium. The results were as follows: 1) $10^{-11}$ M ANG II has a significant stimulatory effect on growth as compared with control. Alkaline phosphatase exhibited significantly increased activity. However, leucine aminopeptidase and ${\gamma}-glutamyl$ transpeptidase activity were not significant as compared with control. In contrast to $10^{-11}$ M ANG II stimulated $Na^+$ uptake $(108.03{\pm}2.16% of that of control)$, $10^{-9}$ M ANG II inhibited ($92.42{\mu}2.23%$ of that of control). The stimulatory effect of ANG II on $Na^+$ uptake was amiloride-sensitive and inhibited by losartan (ANG II receptor subtype 1 antagonist) and not by PD123319 (ANG II receptor subtype 2 antagonist). 2) Pertussis toxin (PTX) alone inhibited $Na^+$ uptake by $85.52{\pm}3.52%$ of that of control. In addition, PTX pretreatment prevented the AMG II-induced stimulation of $Na^+$ uptake. 8-Bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP), forskolin, and isobutylmethylxanthine (IBMX) alone inhibited $Na^+$ uptake by $88.79{\pm}2.56,\;80.63{\pm}4.38,\;and\;84.47{\pm}4.74%$ of that of control, respectively, and prevented the ANG II-induced stimulation of $Na^+$ uptake. However, $10^{-11}$ M ANG II did not stimulate cAMP production. 3) The addition of 12-O-te-tradecanoylphorbol-13-acetate (TPA, 0.01 ng/ml) to the PTCs produced significant increase in $Na^+$ uptake ($114.43{\pm}4.05%$ of that of control). When ANG II and TPA were added together to the PTCs, there was no additive effect on $Na^+$ uptake. Staurosporine alone had no effect on $Na^+$ uptake, but led to a complete inhibition of ANG II- or TPA-induced stimulation of Na'uptake. ANG II treatment resulted in a $111.83{\mu}4.51%$ increase in total protein kinase C (PKC) activity. In conclusion, the PTX-sensitive PKC pathway is the main signaling cascade involved in the stimulatory effects of ANG II on $Na^+$ uptake in the PTCs.

  • PDF

Antioxidative and Anti-inflammatory Effects of Extracts from Different Organs of Cirsium japonicum var. ussuriense (엉겅퀴(Cirsium japonicum var. ussuriense) 부위별 추출물의 항산화 및 항염증 효과)

  • Mok, Ji-Ye;Kang, Hyun-Ju;Cho, Jung-Keun;Jeon, In-Hwa;Kim, Hyeon-Soo;Park, Ji-Min;Jeong, Seung-Il;Shim, Jae-Suk;Jang, Seon-Il
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.39-47
    • /
    • 2011
  • Objective: The roots, leaves, flowers, stems and seeds of Cirsium japonicum var. ussuriense are often used in treatment of human diseases such as hemorrhage, blood congestion and inflammation. Focusing our attention on natural and bioavailable sources of antioxidants and anti-inflammation, we undertook to investigate the antioxidant and anti-inflammatory properties of Cirsium japonicum var. ussuriense used as a folk medicine in Korea. Methods: The extracts of the leaves, stems, flowers, seeds and roots from C. japonicum var. ussuriense were prepared by extracting with water or 80% ethanol. Total flavonoids and polyphenols were measured by a colorimetric assay. The free radical scavenging activity of the extract was analyzed by the DPPH (1,1-diphenyl-2-picryl hydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and Griess reagent assay. An oxidative product of nitric oxide (NO), was measured in the culture medium by the Griess reaction. The level of prostaglandin $E_2$ ($PGE_2$) was measured by enzyme-linked immunosorbent assay. The expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were measured by Western blot analysis. Results: Total flavonoid and polyphenol amounts of the leaves (CLE) and flowers (CFE) showed higher than those of the seed extract (CSE), stem extract (CSTE) and roots (CRE). CLE and CFE also showed the high antioxidant activities such as DPPH, NO-like and ABTS radical scavenging activity. An antioxidant activities of these water extracts showed higher than those of 80% ethanol extracts. We investigated the anti-inflammatory effects of CLE on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. CLE significantly suppressed the levels of the inflammatory mediators such as NO and prostaglandin $E_2$ ($PGE_2$) in dose dependant. Furthermore, the levels of iNOS and COX-2 protein expressions were markedly suppressed by the treatment with CLE extract in a dose dependent manner. Conclusions: These results suggest that CLE water extract has a higher anoxidant and anti-inflammatory activity, these properties may contribute to the oxidative and inflammatory related disease care.