• Title/Summary/Keyword: protein vaccine

Search Result 424, Processing Time 0.035 seconds

Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against Toxoplasma gondii based on calcium-dependent protein kinases antigens through an in-silico analysis

  • Ali Dalir Ghaffari;Fardin Rahimi
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.146-154
    • /
    • 2024
  • Purpose: Infection by the intracellular apicomplexan parasite Toxoplasma gondii has serious clinical consequences in humans and veterinarians around the world. Although about a third of the world's population is infected with T. gondii, there is still no effective vaccine against this disease. The aim of this study was to develop and evaluate a multimeric vaccine against T. gondii using the proteins calcium-dependent protein kinase (CDPK)1, CDPK2, CDPK3, and CDPK5. Materials and Methods: Top-ranked major histocompatibility complex (MHC)-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and linked using appropriate linkers. Moreover, the 50S ribosomal protein L7/L12 (adjuvant) was mixed with the construct's N-terminal to increase the immunogenicity. Then, the vaccine's physicochemical characteristics, antigenicity, allergenicity, secondary and tertiary structure were predicted. Results: The finally-engineered chimeric vaccine had a length of 680 amino acids with a molecular weight of 74.66 kDa. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was soluble, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against T. gondii parasite. Conclusion: In silico, the vaccine construct was able to trigger primary immune responses. However, further laboratory studies are needed to confirm its effectiveness and safety.

Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

  • Md Tahsin Khan;Araf Mahmud;Md. Muzahidul Islam;Mst. Sayedatun Nessa Sumaia;Zeaur Rahim;Kamrul Islam;Asif Iqbal
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.42.1-42.23
    • /
    • 2023
  • Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.

Expression and Immunogenicity of SARS-CoV-2 Virus-Like Particles based on Recombinant Truncated HEV-3 ORF2 Capsid Protein

  • Zhou, Yong-Fei;Nie, Jiao-Jiao;Shi, Chao;Ning, Ke;Cao, Yu-Feng;Xie, Yanbo;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1335-1343
    • /
    • 2022
  • COVID-19 is an emerging disease that poses a severe threat to global public health. As such, there is an urgent demand for vaccines against SARS-CoV-2, the virus that causes COVID-19. Here, we describe a virus-like nanoparticle candidate vaccine against SARS-CoV-2 produced by an E. coli expression system. The fusion protein of a truncated ORF2-encoded protein of aa 439~608 (p170) from hepatitis E virus CCJD-517 and the receptor-binding domain of the spike protein from SARS-CoV-2 were expressed, purified and characterized. The antigenicity and immunogenicity of p170-RBD were evaluated in vitro and in Kunming mice. Our investigation revealed that p170-RBD self-assembled into approximately 24 nm virus-like particles, which could bind to serum from vaccinated people (p < 0.001) and receptors on cells. Immunization with p170-RBD induced the titer of IgG antibody vaccine increased from 14 days post-immunization and was significantly enhanced after a booster immunization at 28 dpi, ultimately reaching a peak level on 42 dpi with a titer of 4.97 log10. Pseudovirus neutralization tests showed that the candidate vaccine induced a strong neutralizing antibody response in mice. In this research, we demonstrated that p170-RBD possesses strong antigenicity and immunogenicity and could be a potential candidate for use in future SARS-CoV-2 vaccine development.

Development of a Novel Subunit Vaccine Targeting Fusobacterium nucleatum FomA Porin Based on In Silico Analysis

  • Jeong, Kwangjoon;Sao, Puth;Park, Mi-Jin;Lee, Hansol;Kim, Shi Ho;Rhee, Joon Haeng;Lee, Shee Eun
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Selecting an appropriate antigen with optimal immunogenicity and physicochemical properties is a pivotal factor to develop a protein based subunit vaccine. Despite rapid progress in modern molecular cloning and recombinant protein technology, there remains a huge challenge for purifying and using protein antigens rich in hydrophobic domains, such as membrane associated proteins. To overcome current limitations using hydrophobic proteins as vaccine antigens, we adopted in silico analyses which included bioinformatic prediction and sequence-based protein 3D structure modeling, to develop a novel periodontitis subunit vaccine against the outer membrane protein FomA of Fusobacterium nucleatum. To generate an optimal antigen candidate, we predicted hydrophilicity and B cell epitope parameter by querying to web-based databases, and designed a truncated FomA (tFomA) candidate with better solubility and preserved B cell epitopes. The truncated recombinant protein was engineered to expose epitopes on the surface through simulating amino acid sequence-based 3D folding in aqueous environment. The recombinant tFomA was further expressed and purified, and its immunological properties were evaluated. In the mice intranasal vaccination study, tFomA significantly induced antigen-specific IgG and sIgA responses in both systemic and oral-mucosal compartments, respectively. Our results testify that intelligent in silico designing of antigens provide amenable vaccine epitopes from hard-to-manufacture hydrophobic domain rich microbial antigens.

Recent progress in vaccine development targeting pre-clinical human toxoplasmosis

  • Ki-Back Chu;Fu-Shi Quan
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.3
    • /
    • pp.231-239
    • /
    • 2023
  • Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded vertebrates. Due to the unavailability of commercialized human T. gondii vaccine, many studies have been reported investigating the protective efficacy of pre-clinical T. gondii vaccines expressing diverse antigens. Careful antigen selection and implementing multifarious immunization strategies could enhance protection against toxoplasmosis in animal models. Although none of the available vaccines could remove the tissue-dwelling parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine studies highlighted their developmental potential and provided insights into rational vaccine design. We herein explored the progress of T. gondii vaccine development using DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summarized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii challenge infection in mice published in the past 5 years.

Protective immunogenicity of the G protein of hirame rhabdovirus (HIRRV) in flounder using DNA vaccine

  • Seo, Ji-Yeon;Kim, Ki-Hong;Kim, Sung-Koo;Kim, Young-Tae;Park, Tae-Jin
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.313-314
    • /
    • 2003
  • Antiviral DNA vaccine carrying a gene for a major antigenic viral protein have received considerable attention as a new approach in vaccine development. For fish viruses effects of DNA vaccine encoding viral G gene of infectious hematopoietic necrosis virus(IHNV) and viral hemorrhagic septicemia virus (VHSV)have been demonst.ated previously(Lapatra et al., 2001) Hirame rhabdovirus (HIRRV) causes hemorragic disease on flounder. (omitted)

  • PDF

Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus

  • Xi, Hualong;Zhang, Kaixin;Yin, Yanchun;Gu, Tiejun;Sun, Qing;Shi, Linqing;Zhang, Renxia;Jiang, Chunlai;Kong, Wei;Wu, Yongge
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.718-724
    • /
    • 2017
  • The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and half-life. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.

Raman Detection of Protein Interfacial Conformations

  • Jang, Mi-Jin;Cho, Il-Young;Callahan, Patricia
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.352-355
    • /
    • 1997
  • The surface adsorbed protein conformations onto the vaccine adjuvants were observed with a Raman spectroscopy by using the maximum adsorption conditions described previously. The adsorbed state Raman vibrational spectra and subsequent spectral analysis display no conformational changes for BSA or IgG relative to their native species in solution.

  • PDF

Pathogenesis, Dianosis, and Prophylactic Vaccine Development for Foot-and-Mouth Disease (구제역의 병리기전 및 진단, 예방백신 개발)

  • Moon, Sun-Hwa;Yang, Joo-Sung
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.301-310
    • /
    • 2005
  • Foot-and-mouth disease (FMD) is a highly contagious disease of mammals and has a great potential for causing severe economic loss in susceptible cloven-hoofed animals, such as cattle, pigs, sheep, goats and buffalo. FMDV, a member of the Aphthovirus genus in the Picornaviridae family, is a non-enveloped icosahedral virus that contains a positive sense RNA of about 8.2 kb in size. The genome carries one open reading frame consisting of 3 regions: capsid protein coding region P1, replication related protein coding region P2, and RNA-dependent RNA polymerase coding region P3. FMDV infects pharynx epithelial cell in the respiratory tract and viral replication is active in lung epithelial cell. Morbidity is extremely high. A FMD outbreak in Korea in 2002 caused severe economic loss. Although intense research is undergoing to develop appropriate drugs to treat FMDV infection, there is no specific therapeutic for controlling FMDV infection. Moreover, there is an increasing demand for the development of vaccine strategies against FMDV infection in many countries. In this report, more effective prevention strategies against FMDV infection were reviewed.

Protection of Mice Against Pandemic H1N1 Influenza Virus Challenge After Immunization with Baculovirus-Expressed Stabilizing Peptide Fusion Hemagglutinin Protein

  • Yang, Eunji;Cho, Yonggeun;Choi, Jung-ah;Choi, YoungJoo;Park, Pil-Gu;Park, Eunsun;Lee, Choong Hwan;Lee, Hyeja;Kim, Jongsun;Lee, Jae Myun;Song, Manki
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.280-287
    • /
    • 2015
  • Current influenza vaccines are produced in embryonated chicken eggs. However, egg-based vaccines have various problems. To address these problems, recombinant protein vaccines have been developed as new vaccine candidates. Unfortunately, recombinant proteins frequently encounter aggregation and low stability during their biogenesis. It has been previously demonstrated that recombinantly expressed proteins can be greatly stabilized with high solubility by fusing stabilizing peptide (SP) derived from the C-terminal acidic tail of human synuclein (ATS). To investigate whether SP fusion proteins can induce protective immunity in mice, we produced influenza HA and SP fusion protein using a baculovirus expression system. In in vitro tests, SP-fused recombinant HA1 (SP-rHA1) was shown to be more stable than recombinant HA1 (rHA1). Mice were immunized intramuscularly with baculovirus-expressed rHA1 protein or SP-rHA1 protein ($2{\mu}g/mouse$) formulated with aluminum hydroxide. Antibody responses were determined by ELISA and hemagglutination inhibition assay. We observed that SP-rHA1 immunization elicited HA-specific antibody responses that were comparable to rHA1 immunization. These results indicate that fusion of SP to rHA1 does not negatively affect the immunogenicity of the vaccine candidate. Therefore, it is possible to apply SP fusion technology to develop stable recombinant protein vaccines with high solubility.