• 제목/요약/키워드: protein structure

검색결과 1,718건 처리시간 0.023초

Comparative Genomics of T-complex protein 10 like in Humans and Chimpanzees

  • Kim, Il-Chul;Kim, Dae-Soo;Kim, Dae-Won;Choi, Sang-Haeng;Choi, Han-Ho;Chae, Sung-Hwa;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • 제3권2호
    • /
    • pp.61-65
    • /
    • 2005
  • Comparing 231 genes on chimpanzee chromosome 22 with their orthologous on human chromosome 21, we have found that 15 orthologs have indels within their coding sequences. It was rather surprising that significant number of genes have changed by indel, despite the shorter time since their divergence and led us hypothesize that indels and structural changes may represent one of the major mechanism of proteome evolution in the higher primates. Human T-complex protein 10 like (TCP 10L) is a representative having indel within its coding sequence. Gene structure of human TCP10L compared with chimpanzee TCP10L gene showed 16 base pair difference in genomic DNA. As a result of the indel, frame shift mutation occurs in coding sequence (CDS) and human TCP10L express longer polypeptide of 21 amino acid residues than that of chimpanzee. Our prediction found that the indel may affect to dramatic change of secondary protein structure between human and chimpanzee TCP10L. Especially, the structural changes in the C-terminal region of TCP10L protein may affect on the interacting potential to other proteins rather than DNA binding function of the protein. Through these changes, TCP10L might influence gene expression profiles in liver and testis and subsequently influence the physiological changes required in primate evolution.

Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Suggests an Alternative Assembly Mode

  • Kim, Jin-Sik;Jeong, Hyeongseop;Song, Saemee;Kim, Hye-Yeon;Lee, Kangseok;Hyun, Jaekyung;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.180-186
    • /
    • 2015
  • Escherichia coli AcrAB-TolC is a multidrug efflux pump that expels a wide range of toxic substrates. The dynamic nature of the binding or low affinity between the components has impeded elucidation of how the three components assemble in the functional state. Here, we created fusion proteins composed of AcrB, a transmembrane linker, and two copies of AcrA. The fusion protein exhibited acridine pumping activity, suggesting that the protein reflects the functional structure in vivo. To discern the assembling mode with TolC, the AcrBA fusion protein was incubated with TolC or a chimeric protein containing the TolC aperture tip region. Three-dimensional structures of the complex proteins were determined through transmission electron microscopy. The overall structure exemplifies the adaptor bridging model, wherein the funnel-like AcrA hexamer forms an intermeshing cogwheel interaction with the ${\alpha}$-barrel tip region of TolC, and a direct interaction between AcrB and TolC is not allowed. These observations provide a structural blueprint for understanding multidrug resistance in pathogenic Gram-negative bacteria.

Inhibition of Farnesyl Protein Transferase by Ortho-substituted Cinnamaldehyde Derivatives

  • Sung, Nack-Do;Kwon, Byoung-Mog;Lim, Chi-Hwan;Cho, Young-Kwon
    • Applied Biological Chemistry
    • /
    • 제41권4호
    • /
    • pp.218-221
    • /
    • 1998
  • Various cinnamaldehyde derivatives were synthesized and their inhibition activity $(pI_{50})$ of farnesyl protein transferase (FPTase) was measured to examine the structure-activity relationships (SAR) on the basis that FPTase was inhibited by ortho-hydroxycinnamaldehyde derived from extracts of the bark of Cinnamomum cassia Blume. The ortho-substituents on the phenyl backbone of cinnamaldehyde showed higher activity than those with meta- and para-substituents, and the side chain required unsaturated aldehyde. In particular, 2-chlorocinnamaldehyde, 5 showed the highest inhibition activity on the FPTase among them and its inhibition activity $(pI_{50})$ value was 4.45.

  • PDF

Intramolecular Hydrogen Bonds in Proteinase Inhibitor Protein, A Molecular Dynamics Simulation Study

  • Chung, Hye-Shin
    • BMB Reports
    • /
    • 제29권4호
    • /
    • pp.380-385
    • /
    • 1996
  • Ovomucoid third domain is a serine proteinase inhibitor protein which consists of 56 amino acid residues. A fifty picosecond molecular dynamics (MD) simulation was carried out for ovomucoid third domain protein with 5 $\AA$ layer of water molecules. A comparison of main chain atoms in the MD averaged structure with the crystal structure showed that most of the backbone structures are maintained during the simulation. Investigation of the intramolecular hydrogen bondings indicated that most of the interactions between main chain atoms were conserved, whereas those between side chains were reorganized for the period of the simulation. Especially, the side chain interactions around the scissile bond of reactive site P1 (Met18) were found to be more extensive for the MD structures. During the simulation, hydrogen bonds were maintained between the side chains of Glu19 and Arg21 as well as those of Thr17 and Glu19. Extensive side chain interactions observed in the MD structures may shed light on the question of why protein proteinase inhibitors are strong inhibitors for proteinases rather than good substrates.

  • PDF

Protein Phosphatase 1D (PPM1D) Structure Prediction Using Homology Modeling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제9권1호
    • /
    • pp.35-40
    • /
    • 2016
  • Protein phosphatase manganese dependent 1D (PPM1D) is one of the Ser/Thr protein phosphatases belongs to the PP2C family. They play an important role in cancer tumorigenesis of various tumors including neuroblastoma, pancreatic adenocarcinoma, medulloblastoma, breast cancer, prostate cancer and ovarian cancer. Even though PPM1D is involved in the pathophysiology of various tumors, the three dimensional protein structure is still unknown. Hence in the present study, homology modelling of PPM1D was performed. 20 different models were modelled using single- and multiple-template based homology modelling and validated using different techniques. Best models were selected based on the validation. Three models were selected and found to have similar structures. The predicted models may be useful as a tool in studying the pathophysiological role of PPM1D.

Tryptic Digestion and Cytochalasin B Binding Assay of the Human HepG2-Type Glucose Transporter Expressed in Spodoptera frugiperda Clone 21-AE Cells

  • 이종기
    • 대한의생명과학회지
    • /
    • 제11권1호
    • /
    • pp.57-61
    • /
    • 2005
  • The number of sites at which a protein can be readily cleaved by a proteolytic enzyme is greatly influenced by its three-dimensional structure. For native, properly-folded proteins both the rate of cleavage and number of sites at which cleavage takes place are usually much less than for the denatured protein. In order to compare the tertiary structure of recombinant HepG2 type glucose transporter with that of its native counterpart in the erythrocyte, the pattern of tryptic cleavage of the protein expressed in insect cell membranes was therefore examined. After 30 minutes digestion, a fragment of approximate Mr 19,000-21,000 was generated. In addition to this, there were two less intensely stained fragments of apparent Mr 28,000 and 17,000. The pattern of labelling was similar up to 2 hours of digestion. However, the fragments of Mr 19,000-21,000 and Mr 17,000 were no longer detectable after 4 hours digestion. The observation of a very similar pattern of fragments yielded by tryptic digestion of the HepG2 type transporter expressed in insect cells suggests that the recombinant protein exhibits a tertiary structure similar if not identical to that of its human counterpart. Also, the endogenous sugar transporter(s) present in Sf21 cells did not bind cytochalasin B, the potent transporter inhibitor. Therefore, the baculovirus/Spodoptera frugiperda (Sf) cell expression system could be very useful for production of large amounts of human glucose transporters, heterologously.

  • PDF

Rv3168 Phosphotransferase Activity Mediates Kanamycin Resistance in Mycobacterium tuberculosis

  • Ahn, Jae-Woo;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1529-1535
    • /
    • 2013
  • Tuberculosis is a worldwide epidemic disease caused by Mycobacterium tuberculosis, with an estimated one-third of the human population currently affected. Treatment of this disease with aminoglycoside antibiotics has become less effective owing to antibiotic resistance. Recent determination of the crystal structure of the M. tuberculosis Rv3168 protein suggests a structure similar to that of Enterococcus faecalis APH(3')-IIIa, and that this protein may be an aminoglycoside phosphotransferase. To determine whether Rv3168 confers antibiotic resistance against kanamycin, we performed dose-response antibiotic resistance experiments using kanamycin. Expression of the Rv3168 protein in Escherichia coli conferred antibiotic resistance against $100{\mu}M$ kanamycin, a concentration that effected cell growth arrest in the parental E. coli strain and an E. coli strain expressing the $Rv3168^{D249A}$ mutant, in which the catalytic Asp249 residue was mutated to alanine. Furthermore, we detected phosphotransferase activity of Rv3168 against kanamycin as a substrate. Moreover, docking simulation of kanamycin into the Rv3168 structure suggests that kanamycin fits well into the substrate binding pocket of the protein, and that the phosphorylation-hydroxyl-group of kanamycin was located at a position similar to that in E. faecalis APH(3')-IIIa. On the basis of these results, we suggest that the Rv3168 mediates kanamycin resistance in M. tuberculosis, likely through phosphotransferase targeting of kanamycin.

HP0902 from Helicobacter pylori is a thermostable, dimeric protein belonging to an all-β topology of the cupin superfamily

  • Sim, Dae-Won;Lee, Yoo-Sup;Kim, Ji-Hun;Seo, Min-Duk;Lee, Bong-Jin;Won, Hyung-Sik
    • BMB Reports
    • /
    • 제42권6호
    • /
    • pp.387-392
    • /
    • 2009
  • Here, we report the first biochemical and structural characterization of the hypothetical protein HP0902 from Helicobacter pylori, in terms of structural genomics. Gel-permeation chromatography and dynamic light scattering indicated that the protein behaves as a dimer in solution. Circular dichroism spectroscopy showed that HP0902 primarily adopts a $\beta$-structure and the protein was highly thermostable with a denaturing temperature higher than $70^{\circ}C$. Finally, the backbone NMR assignments were obtained on the [$^{13}C,^{15}N$]HP0902 and the secondary structure was determined using the chemical shift data. Additionally, the local flexibility was assessed via a heteronuclear $^1H-^{15}N$ steady state NOE experiment. The results revealed that HP0902 would adopt a compactly folded, all-$\beta$ topology with 11 $\beta$-strands. All of the results clearly support the notion that HP0902 belongs to the cupin superfamily of proteins.

Structure and Function of HtrA Family Proteins, the Key Players in Protein Quality Control

  • Kim, Dong-Young;Kim, Kyeong-Kyu
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.266-274
    • /
    • 2005
  • High temperature requirement A (HtrA) and its homologues constitute the HtrA familiy proteins, a group of heat shock-induced serine proteases. Bacterial HtrA proteins perform crucial functions with regard to protein quality control in the periplasmic space, functioning as both molecular chaperones and proteases. In contrast to other bacterial quality control proteins, including ClpXP, ClpAP, and HslUV, HtrA proteins contain no regulatory components or ATP binding domains. Thus, they are commonly referred to as ATP-independent chaperone proteases. Whereas the function of ATP-dependent chaperone-proteases is regulated by ATP hydrolysis, HtrA exhibits a PDZ domain and a temperature-dependent switch mechanism, which effects the change in its function from molecular chaperone to protease. This mechanism is also related to substrate recognition and the fine control of its function. Structural and biochemical analyses of the three HtrA proteins, DegP, DegQ, and DegS, have provided us with clues as to the functional regulation of HtrA proteins, as well as their roles in protein quality control at atomic scales. The objective of this brief review is to discuss some of the recent studies which have been conducted regarding the structure and function of these HtrA proteins, and to compare their roles in the context of protein quality control.

NMR Structure of Syndecan-4L reveals structural requirement for PKC signalling

  • Koo, Bon-Kyoung;Joon Shin;Oh, Eok-Soo;Lee, Weontae
    • 한국자기공명학회:학술대회논문집
    • /
    • 한국자기공명학회 2002년도 International Symposium on Magnetic Resonance
    • /
    • pp.90-90
    • /
    • 2002
  • Syndecans, transmembrane heparan sulfate proteoglycans, are coreceptors with integrin in cell adhesion process. It forms a ternary signaling complex with protein kinase C and phosphatidylinositol 4,5 bisphosphate (PIP2) for integrin signaling. NMR data indicates that cytoplasmic domain of syndecan-4 (4L) undergoes a conformational transition in the presence of PIP2, forming oligomeric conformation. The structure based on NMR data demonstrated that syndecan-4L itself forms a compact intertwined symmetric dimer with an unusual clamp shape for residues Leu$^{186}$ -Ala$^{195}$ . The molecular surface of the syndecan-4L dimer is highly positively charged. In addition, no inter-subunit NOEs in membrane proximal amino acid resides (Cl region) has been observed, demonstrating that the Cl region is mostly unstructured in syndecan-4L dimmer. However, the complex structure in the presence of PIP2 induced a high order multimeric conformation in solution. In addition, phosphorylation of cytoplasmic domain induces conformational change of syndecan-4, resulting inhibition of PKC signaling. The NMR structural data strongly suggest that PIP2 promotes oligomerization of syndecan-4 cytoplasmic domain for PKC activation and further induces structural reorganization of syndecan for mediating signaling network in cell adhesion procedure.

  • PDF