NMR Structure of Syndecan-4L reveals structural requirement for PKC signalling

Bon-Kyoung Koo¹, Joon Shin¹, Eok-Soo Oh² and Weontae Lee¹

¹Department of Biochemistry and Protein Network Research Center, College of Science, Yonsei University, Seoul 120-740 Korea
²Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750 Korea

ABSTRACT

Syndecans, transmembrane heparan sulfate proteoglycans, are coreceptors with integrin in cell adhesion process. It forms a ternary signaling complex with protein kinase C and phosphatidylinositol 4,5 bisphosphate (PIP2) for integrin signaling. NMR data indicates that cytoplasmic domain of syndecan-4 (4L) undergoes a conformational transition in the presence of PIP2, forming oligomeric conformation. The structure based on NMR data demonstrated that syndecan-4L itself forms a compact intertwined symmetric dimer with an unusual clamp shape for residues Leu¹⁸⁶-Ala¹⁹⁵. The molecular surface of the syndecan-4L dimer is highly positively charged. In addition, no inter-subunit NOEs in membrane proximal amino acid resides (C1 region) has been observed, demonstrating that the C1 region is mostly unstructured in syndecan-4L dimer. However, the complex structure in the presence of PIP2 induced a high order multimeric conformation in solution. In addition, phosphorylation of cytoplasmic domain induces conformational change of syndecan-4, resulting inhibition of PKC signaling. The NMR structural data strongly suggest that PIP2 promotes oligomerization of syndecan-4 cytoplasmic domain for PKC activation and further induces structural reorganization of syndecan for mediating signaling network in cell adhesion procedure.