• Title/Summary/Keyword: protein release

Search Result 834, Processing Time 0.027 seconds

LncRNA PART1 Attenuates Myocardial Ischemia-Reperfusion Injury by Regulating TFAP2C/DUSP5 Axis via miR-302a-3p

  • Min Zeng;Xin Wei;Jinchao Zhou;Siqi Luo
    • Korean Circulation Journal
    • /
    • v.54 no.5
    • /
    • pp.233-252
    • /
    • 2024
  • Background and Objectives: Myocardial ischemia-reperfusion injury (MIRI) refers to the damage of cardiac function caused by restoration of blood flow perfusion in ischemic myocardium. However, long non-coding RNA prostate androgen regulated transcript 1 (PART1)'s role in MIRI remain unclear. Methods: Immunofluorescence detected LC3 expression. Intermolecular relationships were verified by dual luciferase reporter assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry and transferase-mediated dUTP nick-end labeling (TUNEL) assays analyzed cell viability and apoptosis. The release of lactate dehydrogenase was tested via enzyme-linked immunosorbent assay (ELISA). Left anterior descending coronary artery surgery induced a MIRI mouse model. Infarct area was detected by 2,3,5-triphenyltetrazolium chloride staining. Hematoxylin and eosin staining examined myocardial injury. ELISA evaluated myocardial marker (creatine kinase MB) level. Results: PART1 was decreased in hypoxia/reoxygenation (H/R) induced AC16 cells and MIRI mice. PART1 upregulation attenuated the increased levels of Bax, beclin-1 and the ratio of LC3II/I, and enhanced the decrease of Bcl-2 and p62 expression in H/R-treated cells. PART1 upregulation alleviated H/R-triggered autophagy and apoptosis via miR-302a-3p. Mechanically, PART1 targeted miR-302a-3p to upregulate transcription factor activating enhancer-binding protein 2C (TFAP2C). TFAP2C silencing reversed the protected effects of miR-302a-3p inhibitor on H/R treated AC16 cells. We further established TFAP2C combined to dual-specificity phosphatase 5 (DUSP5) promoter and activated DUSP5. TFAP2C upregulation suppressed H/R-stimulated autophagy and apoptosis through upregulating DUSP5. Overexpressed PART1 reduced myocardial infarction area and attenuated MIRI in mice. Conclusion: PART1 improved the autophagy and apoptosis in H/R-exposed AC16 cells through miR-302a-3p/TFAP2C/DUSP5 axis, which might provide novel targets for MIRI treatment.

In vitro analysis of antiviral immune response against avian influenza virus in chicken tracheal epithelial cells

  • Jubi Heo;Thi Hao Vu;CH Kim;Anh Duc Truong;Yeong Ho Hong
    • Animal Bioscience
    • /
    • v.37 no.12
    • /
    • pp.2009-2020
    • /
    • 2024
  • Objective: Avian influenza virus (AIV) infections first affect the respiratory tract of chickens. The epithelial cells activate the host immune system, which leads to the induction of immune-related genes and the production of antiviral molecules against external environmental pathogens. In this study, we used chicken tracheal epithelial cells (TECs) in vitro model to investigate the immune response of the chicken respiratory tract against avian respiratory virus infections. Methods: Eighteen-day-old embryonic chicken eggs were used to culture the primary chicken TECs. Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry (ICC) analysis of epithelial cell-specific gene makers were performed to confirm the characteristics, morphology, and growth pattern of primary cultured chicken TECs. Moreover, to investigate the cellular immune response to AIV infection or polyinosinic-polycytidylic acid (poly [I:C]) treatment, the TECs were infected with the H5N1 virus or poly (I:C). Then, immune responses were validated by RT-qPCR and western blotting. Results: The TECs exhibited polygonal morphology and formed colony-type cell clusters. The RT-qPCR results showed that H5N1 infection induced a significant expression of antiviral genes in TECs. We found that TECs treated with poly (I:C) and exposed to AIV infection-mediated activation of signaling pathways, leading to the production of antiviral molecules (e.g., pro-inflammatory cytokines and chemokines), were damaged due to the loss of junction proteins. We observed the activation of the nuclear factor kappa B and mitogen-activated protein kinase (MAPK) pathways, which are involved in inflammatory response by modulating the release of pro-inflammatory cytokines and chemokines in TECs treated with poly (I:C) and pathway inhibitors. Furthermore, our findings indicated that poly (I:C) treatment compromises the epithelial cell barrier by affecting junction proteins in the cell membrane. Conclusion: Our study highlights the utility of in vitro TEC models for unraveling the mechanisms of viral infection and understanding host immune responses in the chicken respiratory tract.

CircZNF609 Aggravated Myocardial Ischemia Reperfusion Injury via Mediation of miR-214-3p/PTGS2 Axis

  • Wen-Qiang Tang;Feng-Rui Yang;Ke-Min Chen;Huan Yang;Yu Liu;Bo Dou
    • Korean Circulation Journal
    • /
    • v.52 no.9
    • /
    • pp.680-696
    • /
    • 2022
  • Background and Objectives: Circular RNAs were known to play vital role in myocardial ischemia reperfusion injury (MIRI), while the role of CircZNF609 in MIRI remains unclear. This study was aimed to investigate the function of CircZNF609 in MIRI. Methods: Hypoxia/reoxygenation (H/R) model was established to mimic MIRI in vitro. Quantitative polymerase chain reaction was performed to evaluate gene transcripts. Cellular localization of CircZNF609 and miR-214-3p were visualized by fluorescence in situ hybridization. Cell proliferation was determined by CCK-8. TUNEL assay and flow cytometry were applied to detect apoptosis. Lactate dehydrogenase was determined by commercial kit. ROS was detected by DCFH-DA probe. Direct interaction of indicated molecules was determined by RIP and dual luciferase assays. Western blot was used to quantify protein levels. In vivo model was established to further test the function of CircZNF609 in MIRI. Results: CircZNF609 was upregulated in H/R model. Inhibition of CircZNF609 alleviated H/R induced apoptosis, ROS generation, restored cell proliferation in cardiomyocytes and human umbilical vein endothelial cells. Mechanically, CircZNF609 directly sponged miR-214-3p to release PTGS2 expression. Functional rescue experiments showed that miR-214-3p/PTGS2 axis was involved in the function of circZNG609 in H/R model. Furthermore, data in mouse model revealed that knockdown of CircZNF609 significantly reduced the area of myocardial infarction and decreased myocardial cell apoptosis. Conclusions: CircZNF609 aggravated the progression of MIRI via targeting miR-214-3p/PTGS2 axis, which suggested CircZNF609 might act as a vital modulator in MIRI.

β-glucan Stimulates Release of TNF-α in Human Monocytic THP-1 Cells (인간 단핵구 THP-1 세포에서 β-glucan으로 인한 TNF-α 분비 증가 효과)

  • Keum, Bo Ram;Hyeon, Jin Yi;Choe, So Hui;Jin, Ji Young;Jeong, Ji Woo;Lim, Jong Min;Park, Dong Chan;Cho, Kwang Keun;Choi, Eun Young;Choi, In Soon
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1256-1261
    • /
    • 2017
  • ${\beta}$-glucan is a constituent of the cell wall of fungi, yeast and plants. It plays an important role in the immune system such as activation of immunocyte, release of pro-inflammatory and anti-cancer effect. The immune system maintains a healthy immune homeostasis. However, when pathogenic substances enter the body, immune homeostasis can break down and disease can be triggered. Therefore, we studied a substance that regulates immune homeostasis. The purpose of the study we demonstrated whether the ${\beta}$-glucan can be applied to the immune-modulation effects in human monocytic THP-1 cells. ${\beta}$-glucan was incubated in THP-1 cells at various concentrations. The $TNF-{\alpha}$ mRNA expression and protein levels were analyzed by ELISA and Real-time PCR. Additionally, the expression of MAPKs (p38 and JNK), $I{\kappa}B-{\alpha}$ and $NF-{\kappa}B$ p50 were analyzed by western blot. ${\beta}$-glucan enhanced the production of $TNF-{\alpha}$ mRNA expression and protein levels in human monocytic THP-1 cells. In addition, activation of MAPKs (p38 and JNK) and $NF-{\kappa}B$ p50 induced by ${\beta}$-glucan were increased. The study suggests that ${\beta}$-glucan contributes to immune-stimulation effect by production $TNF-{\alpha}$ in human monocytic THP-1 cells, and that MAPKs and $NF-{\kappa}B$ p50 are involved in the process. Synthetically, we have suggested ${\beta}$-glucan may be improved to immune system effect in human monocytic THP-1 cells.

EFFECT OF CURCUMIN AND RESVERATROL ON THE CELL CYCLE REGULATION, APOPTOSIS AND INHIBITION OF METASTASIS RELATED PROTEINS IN HN-4 CELLS (Curcumin과 resveratrol에 의한 두경부암 유래의 HN-4 세포의 세포주기, 세포사 및 전이관련 단백질의 발현 조절)

  • Kim, Sa-Yub;Lee, Sang-Han;Kwon, Taeg-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.5
    • /
    • pp.272-281
    • /
    • 2003
  • Nontraditional or alternative medicine is becoming an increasingly attractive approach for the treatment of various inflammatory disorders and cancers. Curcumin is the major constitute of turmoric powder extracted from the rhizomes of the plant Curcuma longa. Resveratrol is a phytoalexin present in grapes and a variety of medicinal plants. In this report, We investigated the effect of curcumin and resveratrol on regulatory protein of cell cycle, induction of apoptosis and MMP activity. Treatment with 75 M curcumin for 24 hrs produced morphological changing in HN-4 cells. Curcumin and resveratrol inhibited the cellular growth in HN-4 cells. Inhibition of cell growth was associated with down-regulation of cell cycle regulatory proteins. Curcumin-induced caspase-3 activation and Bax degradation were dose-dependent with a maximal effect at a concentration of 100 M. The elevated caspase-3 activity in curcumin treated HN-4 cells are correlated with down-regulation of survivin and cIAP1, but not cIAP2. Curcumin induced a dose-dependent increase of cytochrome c in the cytosol. Curcumin induced-apoptosis was mediated through the release of cytochrome c. In addition, curcumin-induced apoptosis was caused by the generation of reactive oxygen species, which was prevented by antioxidant N-acetyl-cysteine (NAC). Cotreatment with NAC markedly prevented cytochrome c release, Bax cleavage and cell death. Also resveratrol-induced apoptosis was preceded by down-regulation of the anti-apoptotic Bcl-2, cIAP1, and caspase-3 activity. However, resveratrol-induced apoptosis was not prevented by antioxidant NAC. In addition, HN-4 cells release basal levels of MMP2 when cultured in serum-free medium. Treatment of the cells with various concentrations of PMA for 24 hr induced the expression and secretion of latent MMP9 as determined by gelatin zymography. HN-4 cells were treated with various concentrations of curcumin and resveratrol in the presence of 75 nM PMA, and MMP2 and 9 activities were inhibited by curcumin and resveratrol. These findings have implications for developing curcumin-based anticancer and anti-inflammation therapies.

Therapeutic comparison between low-dose sustained-release theophylline dry syrup and capsule in children with mild persistent asthma (유소아 경증 지속성 천식에서 저용량 서방형 테오필린 건조시럽과 캡슐 제형의 치료 효과 비교)

  • Lee, Hyun Seung;Lee, Hae Kyung;Kwon, Hi Jeong;Kim, Jeong Hee;Rha, Yeong Ho;Kim, Jin Tack;Kim, Young Ho;Lee, Hae Rhan;Pyun, Bok Yang
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.3
    • /
    • pp.284-291
    • /
    • 2007
  • Purpose : Theophylline has recently been reported to have concurrent anti-inflammatory effects at low therapeutic plasma concentrations which are below the doses at which significants, clinically useful bronchodilatation is evident. Sustained-release formulation in capsule and dry syrup forms were developed to reduce its adverse effects and improve its clinical effects. We compared the therapeutic effects of theophylline dry syrup and capsules in children with mild asthma. Methods : Ninety children with mild asthma were randomized to receive either theophylline dry syrup (n=44) or theophylline capsules (n=46); 4 mg per kilogram of body weight, twice a day, for 12 weeks. Baseline and serial measurements of daytime and nighttime asthma symptom score were performed. Compliance scores, drug swallowing scores, and drug usability scores were measured every 4 weeks. Each scoring was rated on a scale of 0-4. Serum theophylline concentration were measured at 4 and at 12 weeks. To examine the anti-inflammatory effect of theophylline on asthma, Serum eosinophilic cationic protein as a marker of airway inflammation caused by eosinophil was measured 12 weeks pre- and post-administration. Results : The daytime and nighttime asthma symptom scores of the two groups after 4 weeks significantly improved over the baseline score. Daytime and nighttime asthma symptom scores in the dry syrup group were statistically lower at all time points except for the nighttime symptom scores at 4 weeks. Compliance scores, drug swallowing scores, and drug usability scores in the dry syrup group were significantly higher at the end time point. Only in the dry syrup group was the serum ECP at the end time point statistically lower than baseline. Conclusion : Low-dose sustained-release theophylline may be safe and effective in bronchial asthma and this effect may be mediated by its anti-inflammatory action mechanisms. Especially, when used in children with asthma, dry syrup formulation is recommended because of its higher compliance than capsule formulation.

Effects of Application of Controlled Release Fertilizer Blended with Different Nitrogen Releasing Latex Coated Ureas on Rice Growth and Grain Quality (질소 용출속도가 다른 피복요소를 혼합한 완효성비료 시용이 벼 생육 및 쌀 품질에 미치는 영향)

  • Lee, Dong-Wook;Park, Ki-Do;Park, Chang-Young;Kang, Ui-Gum;Son, Il-Soo;Park, Sung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.311-319
    • /
    • 2007
  • This study was conducted to estimate effects of application of controlled release complex fertilizer with latex coated urea (LCU-complex) on growth and grain quality of rice under direct seeded on dry paddy (DS) and transplanted on flooding paddy (TP). Three types of latex coated urea different nitrogen (N) releasing were LCU40, LCU80 and LCU100. The time of N releasing of LCU formulations in water at both 20 and $30^{\circ}C$ was faster in the order of LCU40, LCU80, LCU blend (LCU40, LCU80 and LCU100 was mixed in ratio of 2:2:1), and LCU100. The number of tillers and dry matter weight were great in order of LCU-complex 100% > LCU-complex80% > urea and plant height was not significant. Grain yields at LCU-complex80% in both DS and TP plot were similar to those of urea application. N recovery of LCU-complex80% and 100% was improved 8 and 6% compared to that of conventional urea split application in DS plot and 9 and 4% in TP. Content of protein of grain at applied LCU-complex was less 0.8% and $0.1{\sim}0.7%$ than that of urea in DS and TP, respectively. Content of amylose and Mg/K ratio in rice grain was not significant. Consequently application of LCU-complex blended types of coated urea different N releasing can be reduced 20% of N without yield reduction and improved grain quality compared with urea application.

Role of p-38 MAP Kinase in apoptosis of hypoxia-induced osteoblasts (저산소 상태로 인한 조골세포 고사사기전에서 p-38 MAP kinase의 역할에 관한 연구)

  • Yoon, Jeong-Hyeon;Jeong, Ae-Jin;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.169-183
    • /
    • 2003
  • Tooth movement by orthodontic force effects great tissue changes within the periodontium, especially by shifting the blood flow in the pressure side and resulting in a hypoxic state of low oxygen tension. The aim of this study is to elucidate the possible mechanism of apoptosis in response to hypoxia in MC3T3El osteoblasts, the main cells in bone remodeling during orthodontic tooth movement. MC3T3El osteoblasts under hypoxic conditions ($2\%$ orygen) resulted in apoptosis in a time-dependent manner as estimated by DNA fragmentation assay and nuclear morphology stained with fluorescent dye, Hoechst 33258. Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, completely suppressed the DNA ladder in response to hypoxia. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-1 activity (YVADase) was detected. To confirm what caspases are involved in apoptosis, Western blot analysis was performed using anti-caspase-3 or -6 antibodies. The 10-kDa protein, corresponding to the active products of caspase-3, and the 10-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged cells in which the processing of the full length form of caspase-3 and -6 was evident. While a time course similar to this caspase-3 and -6 activation was evident, hypoxic stress caused the cleavage of lamin A, which was typical of caspase-6 activity. In addition, the stress elicited the release of cytochrome c into the cytosol during apoptosis. Furthermore, we observed that pre-treatment with SB203580, a selective p38 mitogen activated protein kinase inhibitor, attenuated the hypoxia-induced apoptosis. The addition of SB203S80 suppressed caspase-3 and -6-like protease activity by hypoxia up to $50\%$. In contrast, PD98059 had no effect on the hypoxia-induced apoptosis. To confirm the involvement of MAP kinase, JNK/SAPK, ERK, or p38 kinase assay was performed. Although p38 MAPK was activated in response to hypoxic treatment, the other MAPK -JNK/SAPK or ERK- was either only modestly activated or not at all. These results suggest that p38 MAPK is involved in hypoxia-induced apoptosis in MC3T3El osteoblasts.

Differential Intracellular Localization of Mitotic Centromere-associated Kinesin (MCAK) During Cell Cycle Progression in Human Jurkat T Cells (인체 Jurkat T 세포에 있어서 세포주기에 따른 MCAK 단백질의 세포 내 위치변화)

  • Jun Do Youn;Rue Seok Woo;Kim Su-Jung;Kim Young Ho
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.253-260
    • /
    • 2005
  • Mitotic centromere-associated kinesin (MCAK), which is a member of the Kin I (internal motor domain) subfamily of kinesin-related proteins, is known to play a role in mitotic segregation of chromosome during M phase of the cell cycle. In the present study, we have produced a rat polyclonal antibody using human MCAK (HsMCAK) expressed in E. coli as the antigen. The antibody specifically recognized the HsMCAK protein (81 kDa), and could detect its nuclear localization in human Jurkat T cells and 293T cells by Western blot analysis. The specific stage of the cell cycle was obtained through blocking by either hydroxyl urea or nocodazole and subsequent releasing from each blocking for 2, 4, and 7 h. While the protein level of HsMCAK reached a maximum level in the S phase with slight decline in the $G_{2}-M$ phase, the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$ began to be induced in the late S phase and reached a maximum level in the $G_{2}/M $ phase, and then it disappeared as the cells enter into the $G_{1}$ phase. Immunocytochemical analysis revealed that HsMCAK protein localized to centrosome and nucleus at the interphase, whereas it appeared to localize to the spindle pole, centromere of the condensed mitotic DNA, spindle fiber, or midbody, depending on the specific stage of the M phase. These results demonstrate that a rat polyclonal antibody raised against recombinant HsMCAK expressed in E. coli specifically detects human MCAK, and indicate that the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$, which may be associated with its differential intracellular localization during the cell cycle, fluctuates with a maximum level of the shift at the $G_{2}-M$ phase.

Inhibitory Effects of Amitriptyline, Sertraline and Chlorpromazine on the Thrombin-induced Aggregation of Platelets (Thrombin성 혈소판응집에 대한 Amitriptyline, Sertraline 및 Chlorpromazine의 억제작용)

  • Choi, Sang-Hyun;Lee, Young-Jae;Shin, Kyung-Ho;Chun, Yeon-Sook;Chun, Boe-Gwun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.299-311
    • /
    • 1995
  • Platelets resemble monoaminergic neurons in several respects, i.e. the uptake of 5-HT and its inhibition, the subcellular storage and release of 5-HT, and the metabolism of aromatic amines brought about by monoamine oxidase. And the 5-HT content of rabbit platelets is well known to be about 40 times higher than that of human platelets. Therefore, this study was carried out to investigate the influences of amitriptyline (AMT) and sertraline (SRT) on the aggregation, contents of signaling second messengers, and protein phosphorylations of rabbit platelets in response to thrombin, 0.25 unit/ml, comparing with those of chlorpromazine (CPZ). Thrombin-induced aggregation was inhibited by SRT $(IC50:4.37{\times}10^{-5}\;M)$, CPZ $(IC50:5.76{\times}10^{-5}\;M)$, and AMT $(IC50:1.15{\times}10^{-4}\;M)$, respectively, and the aggregation by A23187 $(1.0\;{\mu}M)$ or PMA (320 nM) was also inhibited by SRT, CPZ, and AMT. AMT, SRT, and CPZ had little affects on basal contents of platelet $TXB_2$ and $PGE_2$, but all of them inhibited the thrombin-induced increase of $TXB_2$. Thrombin did not change the platelet contents of cAMP and cGMP. CPZ, AMT, and SRT produced the slight decrease of basal cAMP content, and their effects were not affected by thrombin-treatment. But SRT and AMT moderately increased the basal cGMP content, and the cGMP content of thrombin-stimulated platelets was gradually increased by the pretreatment with SRT, AMT, and CPZ. Particularly, the SRT-dependent increase of the cGMP content was notable. Platelet $Ins(1,4,5)P_3$ content was rapidly increased up to a plateau within 10 sec after thrombin-stimulation, AMT, SRT, and CPZ increased the basal $Ins(1,4,5)P_3$ content, and the thrombin-dependent increase was enhanced by pretreatment with CPZ and AMT, but was blunted by SRT. Platelet $[Ca^{2+}]_i$, was rapidly increased up to a peak level within 20 sec after thrombin-stimulation. The increase of $[Ca^{2+}]_i$ was sisnificantly inhibited by AMT, SRT, and CPZ. Thrombin- or PMA-induced phosphorylations of platelet $41{\sim}43\;kDa$ and 20 kDa proteins were significantly inhibited by AMT, SRT, and CPZ. These results suggest that the antiplatelet activities of AMT and CPZ may be considerably attributed to the inhibition of protein kinase C activity, and the activity of SRT may be associated with the inhibitory effect on the thrombin-induced increase of $Ins(1,4,5)P_3$ and the increasing effect on the cGMP content of ptatelets. Therefore, it seems to be evident that AMT and SRT may produce their antidepressant activity, at least, partly through the inhibition of protein kinase C activity or the increase of resting $Ins(1,4,5)P_3$, content and in case of SRT, to a lesser extent, via the increase of cGMP in the brain.

  • PDF