• Title/Summary/Keyword: protein release

Search Result 834, Processing Time 0.026 seconds

Mild encephalopathy with a reversible splenial lesion in a girl with acute pyelonephritis

  • Yeom, Jung Sook;Koo, Chung Mo;Park, Ji Sook;Seo, Ji-Hyun;Park, Eun Sil;Lim, Jae-Young;Woo, Hyang-Ok;Youn, Hee-Shang
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.2
    • /
    • pp.64-67
    • /
    • 2018
  • We report the case of a 12-year-old girl who had mild encephalopathy with a reversible splenial lesion (MERS) associated with acutepyelonephritis caused by Escherichia coli. The patient was admitted with a high fever, and she was diagnosed with acute pyelonephritis based on pyuria and the results of urine culture, which detected cefotaxime-sensitive E. coli. Although intravenous cefotaxime and tobramycin were administered, her fever persisted and her C-reactive protein level increased to 307 mg/L. On day 3 of admission, she demonstrated abnormal neuropsychiatric symptoms, such as delirium, ataxia, and word salad. Magnetic resonance imaging (MRI) of the brain performed on day 4 showed marked hyperintensities in the bilateral corpus callosum and deep white matter on diffusion-weighted images, with corresponding diffusion restriction on apparent diffusion coefficient mapping. No abnormalities or pathogens were detected in the cerebrospinal fluid; however, lipopolysaccharides (LPS, endotoxin) were detected in plasma (41.6 pg/mL), associated with acute neurological deterioration. Her clinical condition gradually improved, and no neurological abnormalities were observed on day 6. Follow-up brain MRI performed 2 weeks later showed near-disappearance of the previously noted hyperintense lesions. In this patient, we first proved endotoxemia in a setting of MERS. The release of LPS following antibiotic administration might be related to the development of MERS in this patient. The possibility of MERS should be considered in patients who present with acute pyelonephritis and demonstrate delirious behavior.

Bioproduction of trans-10,cis-12-Conjugated Linoleic Acid by a Highly Soluble and Conveniently Extracted Linoleic Acid Isomerase and an Extracellularly Expressed Lipase from Recombinant Escherichia coli Strains

  • Huang, Mengnan;Lu, Xinyao;Zong, Hong;Zhuge, Bin;Shen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • The low solubility and high-cost recovery of Propionibacterium acnes polyunsaturated fatty acid isomerase (PAI) are key problems in the bioproduction of high value-added conjugated linoleic acid (CLA). To improve the solubility of recombinant PAI, six chaperone proteins were coexpressed with PAI. Introduction of GroELS proteins dramatically improved the PAI solubility from 29% to 97%, with increased activity by 57.8%. Combined expression of DnaKJ-GrpE and GroELS proteins increased the activity by 11.9%. In contrast, coexpression of DnaKJ-GrpE proteins significantly reduced the activity by 57.4%. Plasmids pTf16 harboring the tig gene and pG-Tf2 containing the tig and groEL-groES genes had no visible impact on PAI expression. The lytic protein E was then introduced into the recombinant Escherichia coli to develop a cell autolysis system. A 35% activity of total intracellular PAI was released from the cytoplasm by suspending the lysed cells in distilled water. The PAI recovery was further improved to 81% by optimizing the release conditions. The lipase from Rhizopus oryzae was also expressed in E. coli, with an extracellular activity of 110.9 U/ml. By using the free PAI and lipase as catalysts, a joint system was established for producing CLA from sunflower oil. Under the optimized conditions, the maximum titer of t-10,c-12-CLA reached 9.4 g/l. This work provides an effective and low-cost strategy to improve the solubility and recovery of the recombinant intracellular PAI for further large-scale production of CLA.

Cadmium-induced E-cadherin Expression in Cerebrovascular Endothelial Cells (카드뮴이 뇌혈관 내피세포에서의 E-cadherin 발현에 미치는 영향)

  • Seok, Sun-Mi;Lee, Tae-Gu;Kim, Young-Chae;Moon, Chang-Hyun;Baik, Eun-Joo;Jung, Yi-Sook;Lee, Soo-Hwan
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.137-145
    • /
    • 2007
  • The effect of cadmium chloride $(CdCl_2)$ on the expression of E-cadherin was examined in bEnd.3 mouse brain endothelial cells. $CdCl_2$ induced $PGE_2$ release, which were blocked by non-steroidal antinflamatory drugs (NSAIDs) such as indomethacin and NS398 indicating the expression of COX-2 might contribute to $PGE_2$ production. $CdCl_2$ decreased the expression of E-cadherin, but not VE-cadherin at levels of mRNA and protein. Reduced expression level of E-cadherin was restored by NSAIDs, which was reversed by the addition of $PGE_2$. $CdC_2$-induced decrease of E-cadherin level was also recovered by antioxidants including N-acetylcyteine (NAC) and trolox. Together with previous report which showed $CdCl_2$ induced COX-2 expression in a cellular oxidative stress dependent manner, these data suggest that $CdCl_2$ decreases E-cadherin expression through induction of cellular oxidative stress and in turn COX-2 expression in brain endothelial cells.

Effects of Exogenous Bovine Somatotropin on Mammary Function of Late Lactating Crossbred Holstein Cows

  • Tanwattana, P.;Chanpongsang, S.;Chaiyabutr, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.88-95
    • /
    • 2003
  • The objective of the present study was to determine the effect of exogenous bovine somatotropin on the mammary function in late lactating crossbred Holstein cows. Twelve 87.5% late lactating Holstein cows, approximately 30 weeks postpartum, were divided into two groups of 6 animals each. Animals in the control group were given sodium bicarbonate buffer by subcutaneous injection, while animals in the treated group were given recombinant bovine somatotropin (bST) by subcutaneous injection with 500 mg of bST (14 day prolonged-release bST). After bST injection, milk yield significantly increased from the control level on day 8 to day 20 (p<0.05) with a concomitant increase in mammary blood flow (p<0.01). An increase in mammary blood flow in response to bST treatment was greater than an increase in milk production. An increased plasma concentration of IGF-I coincided with an increase in mammary blood flow in animals treated with bST. There were no significant changes in the concentration of arterial plasma glucose concentration, the arteriovenous concentration difference (A-V difference) and mammary extraction ratio while the mammary glucose uptake increased when compared to the control group. The concentration of arterial plasma triglyceride decreased throughout the experimental period in animals give bST. The plasma concentration of acetate, and the mammary uptake for acetate significantly increased (p<0.05) after bST treatment. The action of bST did not affect the plasma concentration, A-V difference and extraction ratio across the mammary gland for $\beta$-hydroxybutyrate. The concentrations of milk fat and lactose tended to increase during bST treatment. Milk protein concentration initially increased in the first few days and decreased after bST injection when compared to the pretreated period. The present results indicated that bST could affect the mammary function in late lactating cows by increase in milk yield involving changes in both extra-mammary and intra-mammary mechanisms. The exogenous bST exerted its galactopoietic action through an increase in circulating IGF-I of the late lactating Crossbred Holstein cattle.

Cervical Cancer Gene Therapy by Gene Loaded PEG-PLA Nanomedicine

  • Liu, Bo;Han, Shu-Mei;Tang, Xiao-Yong;Han, Li;Li, Chang-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4915-4918
    • /
    • 2014
  • Background and Aims: Advances in the treatment of cervical cancer over the last decade have predominantly involved the development of genes directed at molecular targets. Gene therapy is recognized to be a novel method for the treatment of cervical cancer. Genes can be administered into target cells via nanocarriers. This study aimed to develop systemically administrable nano-vectors. Floate (Fa) containing gene loaded nanoparticles (NPs) could target HeLa human cervical cancer cells through combination with receptors on the cells to increase the nuclear uptake of genetic materials. Methods: Fa was linked onto Poly (ethylene glycol)-b-poly (D, L-lactide) (PEG-PLA) to form Fa-PEG-PLA, and the resulting material was used to load plasmids of enhanced green fluorescence protein (pEGFP) to obtain gene loaded nanoparticles (Fa-NPs/DNA). Physical-chemical characteristics, in vitro release and cytotoxicity of Fa-NPs/DNA were evaluated. The in vitro transfection efficiency of Fa-NPs/DNA was evaluated in HeLa cells and human umbilical vein endothelial cells (HUVEC). PEG-PLA without Fa was used to load pEGFP from NPs/DNA as a control. Results: Fa-NPs/DNA has a particle size of 183 nm and a gene loading quantity of 92%. After 72h of transfection, Fa-NPs/DNA displayed over 20% higher transfection efficiency than NPs/DNA and 40% higher than naked DNA in HeLa cells. However, in HUVECs, no significant difference appeared between Fa-NPs/DNA and NPs/DNA. Conclusions: Fa-PEG-PLA NPs could function as excellent materials for gene loading. This nano-approach could be used as tumor cell targeted medicine for the treatment of cervical cancer.

HY253, a Novel Decahydrofluorene Analog, Induces Apoptosis via Intrinsic Pathway and Cell Cycle Arrest in Liver Cancer HepG2 Cells

  • Choi, Ko-woon;Suh, Hyewon;Jang, Seunghun;Kim, Dongsik;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.413-417
    • /
    • 2015
  • Recently, we isolated HY253, a novel decahydrofluorene analog with a molecular structure of 7,8a-divinyl-2,4a,4b,5,6,7,8,8a,9,9a-decahydro-1H-fluorene-2,4a,4b,9a-tetraol from the roots of Aralia continentalis, which is known as Dokwhal (獨活), a traditional medicinal herb. Moreover, we previously reported its cytotoxic activity on cancer cell proliferation in human lung cancer A549 and cervical cancer HeLa cells. The current study aimed to evaluate its detailed molecular mechanisms in cell cycle arrest and apoptotic induction in human hepatocellular carcinoma HepG2 cells. Flow cytometric analysis of HepG2 cells treated with $60{\mu}M$ HY253 revealed appreciable cell cycle arrest at the G1 phase via inhibition of Rb phosphorylation and down-regulation of cyclin D1. Furthermore, using western blots, we found that up-regulation of cyclin-dependent kinase inhibitors, such as p21CIP1 and p27KIP1, was associated with this G1 phase arrest. Moreover, TUNEL assay and immunoblottings revealed apoptotic induction in HepG2 cells treated with $60{\mu}M$ HY253 for 24 h, which is associated with cytochrome c release from mitochondria, via down-regulation of anti-apoptotic Bcl-2 protein, which in turn resulted in activation of caspase-9 and -3, and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Accordingly, we suggest that HY253 may be a potent chemotherapeutic hit compound for treating human liver cancer cells via up-regulation and activation of the p53 gene.

Synergistic Efficacy of Concurrent Treatment with Cilostazol and Probucol on the Suppression of Reactive Oxygen Species and Inflammatory Markers in Cultured Human Coronary Artery Endothelial Cells

  • Park, So-Youn;Lee, Jeong-Hyun;Shin, Hwa-Kyoung;Kim, Chi-Dae;Lee, Won-Suk;Rhim, Byung-Yong;Shin, Yung-Woo;Hong, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.165-170
    • /
    • 2008
  • In the present study, we aimed to identify the synergistic effects of concurrent treatment of low concentrations of cilostazol and probucol to inhibit the oxidative stress with suppression of inflammatory markers in the cultured human coronary artery endothelial cells (HCAECs). Combination of cilostazol (0.3${\sim}3{\mu}$M) with probucol (0.03${\sim}0.3{\mu}$M) significantly suppressed TNF-${\alpha}$-stimulated NAD(P)H-dependent superoxide, lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) production and TNF-${\alpha}$ release in comparison with probucol or cilostazol alone. The combination of cilostazol (0.3${\sim}3{\mu}$M) with probucol (0.1${\sim}0.3{\mu}$M) inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) more significantly than did the monotherapy with either probucol or cilostazol. In line with these results, combination therapy significantly suppressed monocyte adhesion to endothelial cells. Taken together, it is suggested that the synergistic effectiveness of the combination therapy with cilostazol and probucol may provide a beneficial therapeutic window in preventing atherosclerosis and protecting from cerebral ischemic injury.

Effects of Histamine on Cultured Interstitial Cells of Cajal in Murine Small Intestine

  • Kim, Byung Joo;Kwon, Young Kyu;Kim, Euiyong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2013
  • Interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal tract, and histamine is known to regulate neuronal activity, control vascular tone, alter endothelial permeability, and modulate gastric acid secretion. However, the action mechanisms of histamine in mouse small intestinal ICCs have not been previously investigated, and thus, in the present study, we investigated the effects of histamine on mouse small intestinal ICCs, and sought to identify the receptors involved. Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record potentials (in current clamp mode) from cultured ICCs. Histamine was found to depolarize resting membrane potentials concentration dependently, and whereas 2-PEA (a selective H1 receptor agonist) induced membrane depolarizations, Dimaprit (a selective H2-agonist), R-alpha-methylhistamine (R-alpha-MeHa; a selective H3-agonist), and 4-methylhistamine (4-MH; a selective H4-agonist) did not. Pretreatment with $Ca^{2+}$-free solution or thapsigargin (a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum) abolished the generation of pacemaker potentials and suppressed histamine-induced membrane depolarization. Furthermore, treatments with U-73122 (a phospholipase C inhibitor) or 5-fluoro-2-indolyl des-chlorohalopemide (FIPI; a phospholipase D inhibitor) blocked histamine-induced membrane depolarizations in ICCs. On the other hand, KT5720 (a protein kinase A inhibitor) did not block histamine-induced membrane depolarization. These results suggest that histamine modulates pacemaker potentials through H1 receptor-mediated pathways via external $Ca^{2+}$ influx and $Ca^{2+}$ release from internal stores in a PLC and PLD dependent manner.

Benzyldihydroxyoctenone, a Novel Nonsteroidal Antiandrogen, Shows Differential Apoptotic Induction in Prostate Cancer Cells in Response to Their Androgen Responsiveness

  • Suh, Hye-Won;Oh, Ha-Lim;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.540-544
    • /
    • 2011
  • The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgensensitivity.

Radicicol Inhibits iNOS Expression in Cytokine-Stimulated Pancreatic Beta Cells

  • Youn, Cha Kyung;Park, Seon Joo;Li, Mei Hong;Lee, Min Young;Lee, Kun Yeong;Cha, Man Jin;Kim, Ok Hyeun;You, Ho Jin;Chang, In Youp;Yoon, Sang Pil;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.315-320
    • /
    • 2013
  • Here, we show that radicicol, a fungal antibiotic, resulted in marked inhibition of inducible nitric oxide synthase (iNOS) transcription by the pancreatic beta cell line MIN6N8a in response to cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$). Treatment of MIN6N8a cells with radicicol inhibited CM-stimulated activation of NF-${\kappa}B$/Rel, which plays a critical role in iNOS transcription, in a dose-related manner. Nitrite production in the presence of PD98059, a specific inhibitor of the extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) pathway, was dramatically diminished, suggesting that the ERK1/2 pathway is involved in CM-induced iNOS expression. In contrast, SB203580, a specific inhibitor of p38, had no effect on nitrite generation. Collectively, this series of experiments indicates that radicicol inhibits iNOS gene expression by blocking ERK1/2 signaling. Due to the critical role that NO release plays in mediating destruction of pancreatic beta cells, the inhibitory effects of radicicol on iNOS expression suggest that radicicol may represent a useful anti-diabetic activity.