• Title/Summary/Keyword: protein kinases

Search Result 730, Processing Time 0.028 seconds

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.

Multitarget effects of Korean Red Ginseng in animal model of Parkinson's disease: antiapoptosis, antioxidant, antiinflammation, and maintenance of blood-brain barrier integrity

  • Choi, Jong Hee;Jang, Minhee;Nah, Seung-Yeol;Oh, Seikwan;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.379-388
    • /
    • 2018
  • Background: Ginsenosides are the main ingredients of Korean Red Ginseng. They have extensively been studied for their beneficial value in neurodegenerative diseases such as Parkinson's disease (PD). However, the multitarget effects of Korean Red Ginseng extract (KRGE) with various components are unclear. Methods: We investigated the multitarget activities of KRGE on neurological dysfunction and neurotoxicity in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. KRGE (37.5 mg/ kg/day, 75 mg/kg/day, or 150 mg/kg/day, per os (p.o.)) was given daily before or after MPTP intoxication. Results: Pretreatment with 150 mg/kg/day KRGE produced the greatest positive effect on motor dysfunction as assessed using rotarod, pole, and nesting tests, and on the survival rate. KRGE displayed a wide therapeutic time window. These effects were related to reductions in the loss of tyrosine hydroxylase-immunoreactive dopaminergic neurons, apoptosis, microglial activation, and activation of inflammatory factors in the substantia nigra pars compacta and/or striatum after MPTP intoxication. In addition, pretreatment with KRGE activated the nuclear factor erythroid 2-related factor 2 pathways and inhibited phosphorylation of the mitogen-activated protein kinases and nuclear factor-kappa B signaling pathways, as well as blocked the alteration of blood-brain barrier integrity. Conclusion: These results suggest that KRGE may effectively reduce MPTP-induced neurotoxicity with a wide therapeutic time window through multitarget effects including antiapoptosis, antiinflammation, antioxidant, and maintenance of blood-brain barrier integrity. KRGE has potential as a multitarget drug or functional food for safe preventive and therapeutic strategies for PD.

Mitogen-Activated Protein Kinases (MAPKs) Mediate SIN-1/ Glucose Deprivation-Induced Death in Rat Primary Astrocytes

  • Yoo Byoung-Kwon;Choi Ji-Woong;Choi Min-Sik;Ryu Mi-Kyoung;Park Gyu-Hwan;Jeon Mi-Jin;Ko Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.942-947
    • /
    • 2005
  • Peroxynitrite is a potent neurotoxic molecule produced from a reaction between NO and super-oxide and induces NO-mediated inflammation under neuropathological conditions. Previously, we reported that glucose deprivation induced ATP depletion and cell death in immunostimulated astrocytes, which was mainly due to peroxynitrite. In this study, the role of MAPKs (ERK1/2, p38MAPK, and JNK/SAPK) signal pathway in the SIN-1/glucose deprivation-induced death of astrocytes was examined. A combined treatment with glucose deprivation and $50 {\mu}M$ SIN-1, an endogenous peroxynitrite generator, rapidly and markedly increased the death in rat primary astrocytes. Also, SIN-1/glucose deprivation resulted in the activation of MAPKs, which was significantly blocked by the treatment with $20{\mu}M$ MAPKs inhibitors (ERK1/2, PD98059; p38MAPK, SB203580; JNK/SAPK, SP600125). Interestingly, SIN-1/glucose deprivation caused the loss of intracellular ATP level, which was significantly reversed by MAPKs inhibitors. These results suggest that the activation of MAPKs plays an important role in SIN-1/glucose deprivation-induced cell death by regulating the intracellular ATP level.

Peripheral Cellular Mechanisms of Artemin-induced Thermal Hyperalgesia in Rats

  • Kim, Hye-Jin;Yang, Kui-Ye;Lee, Min-Kyung;Park, Min-Kyoung;Son, Jo-Young;Ju, Jin-Sook;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In the present study, we investigated the role of peripheral ionotropic receptors in artemin-induced thermal hyperalgesia in the orofacial area. Male Sprague-Dawley rats weighting 230 to 280 g were used in the study. Under anesthesia, a polyethylene tube was implanted in the subcutaneous area of the vibrissa pad, which enabled drug-injection. After subcutaneous injection of artemin, changes in air-puff thresholds and head withdrawal latency time were evaluated. Subcutaneous injection of artemin (0.5 or $1{\mu}g$) produced significant thermal hyperalgesia in a dose-dependent manner. However, subcutaneous injection of artemin showed no effect on air-puff thresholds. IRTX ($4{\mu}g$), a TRPV1 receptor antagonist, D-AP5 (40 or $80{\mu}g$), an NMDA receptor antagonist, or NBQX (20 or $40{\mu}g$), an AMPA receptor antagonist, was injected subcutaneously 10 min prior to the artemin injection. Pretreatment with IRTX and D-AP5 significantly inhibited the artemin-induced thermal hyperalgesia. In contrast, pretreatment with both doses of NBQX showed no effect on artemin-induced thermal hyperalgesia. Moreover, pretreatment with H-89, a PKA inhibitor, and chelerythrine, a PKC inhibitor, decreased the artemin-induced thermal hyperalgesia. These results suggested that artemin-induced thermal hyperalgesia is mediated by the sensitized peripheral TRPV1 and NMDA receptor via activation of protein kinases.

Prediction of Exposure to 1763MHz Radiofrequency Radiation Using Support Vector Machine Algorithm in Jurkat Cell Model System

  • Huang Tai-Qin;Lee Min-Su;Bae Young-Joo;Park Hyun-Seok;Park Woong-Yang;Seo Jeong-Sun
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2006
  • We have investigated biological responses to radiofrequency (RF) radiation in in vitro and in vivo models. By measuring the levels of heat shock proteins as well as the activation of mitogen activated protein kinases (MAPKs), we could not detect any differences upon RF exposure. In this study, we used more sensitive method to find the molecular responses to RF radiation. Jurkat, human T-Iymphocyte cells were exposed to 1763 MHz RF radiation at an average specific absorption rate (SAR) of 10 W/kg for one hour and harvested immediately (R0) or after five hours (R5). From the profiles of 30,000 genes, we selected 68 differentially expressed genes among sham (S), R0 and R5 groups using a random-variance F-test. Especially 45 annotated genes were related to metabolism, apoptosis or transcription regulation. Based on support vector machine (SVM) algorithm, we designed prediction model using 68 genes to discriminate three groups. Our prediction model could predict the target class of 19 among 20 examples exactly (95% accuracy). From these data, we could select the 68 biomarkers to predict the RF radiation exposure with high accuracy, which might need to be validated in in vivo models.

The anti-inflammatory effects of Cicadidae Periostracum (선태(蟬蛻)의 항염효과(抗炎效果)에 대한 실험적(實驗的) 연구(硏究))

  • Kim, Kyoung-Wan;Cho, Han-Baek;Kim, Song-Baeg;Choe, Chang-Min;Seo, Yun-Jung
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.1
    • /
    • pp.15-26
    • /
    • 2011
  • Objectives: The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Cicadidae Periostracum(CP) on the RAW 264.7 cells. Method: We examined the cytokine productions including nitric oxide(NO), interleukin(IL)-1b, IL-6 and tumor necrosis factor-a(TNF-a) in lipopolysaccharide (LPS)-induced RAW 264.7 cells and also inhibitory mechanisms such as mitogen -activated protein kinases(MAPKs) and nuclear factor kappa BNF-kB) using Western blot. Results: CP inhibited LPS-induced production of NO, IL-1b and TNF-a but not of IL-6 in RAW 264.7 cells. CP respectively inhibited the activation of MAPKs such as extracelluar signal-regulated kinase(ERK 1/2), c-Jun $NH_2$-terminal kinase(JNK), p38 and NF-kB in the LPS-stimulated RAW 264.7 cells. Also oral administration of CP inhibited CLP - induced endotoxin shock. Conclusion: our results showed that CP down-regulated LPS-induced NO, IL-1b and TNF-a productions mainly through ERK, JNK, p38 MAPK and NF-kB pathway, which suggest the anti-inflammatory effects of CP.

The Effect of Rice Bran Extract on the Apoptosis Induction of HL-60 Leukemia Cells (미강(Rice Bran) 추출물의 HL-60 백혈병 세포 Apoptosis 유도 효과)

  • Kim, Eun-Ji;Moon, Jungsun;Kang, Jung-Il;Lee, Young-Ki;Koh, Young-Sang;Yoo, Eun-Sook;Kang, Hee-Kyoung;Yim, Dongsool
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.3
    • /
    • pp.269-274
    • /
    • 2013
  • In this study, we investigated the anticancer effect of rice bran extract in HL-60 human promyelocytic leukemia cells. The extract of rice bran inhibited the proliferation of HL-60 cells. When treated with the rice bran extract, we could observe the apoptotic characteristics such as apoptotic bodies and the increase of sub-G1 hypodiploid cell population, increase of Bax level, decrease of Bcl-2 expression, cleavage of procaspase-3, cleavage of procaspase-9 and cleavage of poly(ADP-ribose) polymerase(PARP) in HL-60 cells. Furthermore, the apoptosis induction of HL-60 cells treated with the rice bran extract was also accompanied by the inactivation of mitogen-activated protein kinases (MAPK) such as ERK1/2 MAPK and p38 MAPK. In addition, the rice bran extract induced the down-regulation of c-myc. These data suggested that the rice bran extract could induce the apoptosis via the inactivation of ERK1/2 MAPK and p38 MAPK, and the down-regulation of c-myc in HL-60 acute pomyelocytic leukemia cells. The results support that the rice bran extract might have potential for the treatment of acute promyelocytic leukemia.

Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling

  • Kim, Donghee;Li, Hui Ying;Lee, Jong Han;Oh, Yoon Sin;Jun, Hee-Sook
    • Experimental and Molecular Medicine
    • /
    • v.51 no.2
    • /
    • pp.9.1-9.10
    • /
    • 2019
  • Mesangial cell proliferation has been identified as a major factor contributing to glomerulosclerosis, which is a typical symptom of diabetic nephropathy (DN). Lysophosphatidic acid (LPA) levels are increased in the glomerulus of the kidney in diabetic mice. LPA is a critical regulator that induces mesangial cell proliferation; however, its effect and molecular mechanisms remain unknown. The proportion of ${\alpha}-SMA^+/PCNA^+$ cells was increased in the kidney cortex of db/db mice compared with control mice. Treatment with LPA concomitantly increased the proliferation of mouse mesangial cells (SV40 MES13) and the expression of cyclin D1 and CDK4. On the other hand, the expression of $p27^{Kip1}$ was decreased. The expression of $Kr{\ddot{u}}ppel$-like factor 5 (KLF5) was upregulated in the kidney cortex of db/db mice and LPA-treated SV40 MES13 cells. RNAi-mediated silencing of KLF5 reversed these effects and inhibited the proliferation of LPA-treated cells. Mitogen-activated protein kinases (MAPKs) were activated, and the expression of early growth response 1 (Egr1) was subsequently increased in LPA-treated SV40 MES13 cells and the kidney cortex of db/db mice. Moreover, LPA significantly increased the activity of the Ras-related C3 botulinum toxin substrate (Rac1) GTPase in SV40 MES13 cells, and the dominant-negative form of Rac1 partially inhibited the phosphorylation of p38 and upregulation of Egr1 and KLF5 induced by LPA. LPA-induced hyperproliferation was attenuated by the inhibition of Rac1 activity. Based on these results, the Rac1/MAPK/KLF5 signaling pathway was one of the mechanisms by which LPA induced mesangial cell proliferation in DN models.

Anti-inflammatory Effect of Fructus Chaenomelis(FC) (목과(木瓜)의 항염(抗炎) 및 면역반응(免疫反應)에 대한 실험적(實驗的) 연구(硏究))

  • Lee, Su-Jeong;Kim, Song-Baeg;Choe, Chang-Min;Lee, Key-Sang;Cho, Han-Baek
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.4
    • /
    • pp.36-48
    • /
    • 2008
  • Purpose: The purpose of this study is to investigate anti-inflammatory effect and immune responses of aqueous extract from Fructus Chaenomelis (FC). Methods: We studied anti-inflammatory effect by means of examining the production of NO(nitric oxide) and expressions of pro-inflammatory cytokine (TNF-$\alpha$(tumor necrosis factor-alpha), IL(Interleukin)-6, IL-12) in the LPS-induced peritoneal macrophages of mice. Also, The western blot analysis has been done to look into the mechanism of anti-inflammatory effect. Results: 1. The FC extract did not have any cytotoxicity in the peritoneal macrophages. 2. The FC extract inhibits the productions of NO, IL-6. IL-12 in the LPS-stimulated peritoneal macrophages of mice, but not of TNF-$\alpha$. 3. The FC extract inhibits the activation of NF-${\kappa}B$(nuclear factor-kappa B) by keeping $I{\kappa}B-\alpha$(inhibitory kappa B-alpha) from degradating, but not of MAPKs(mitogen-activated protein kinases) such as ERK(extracelluar signa 1-regulated kinase), JNK(c-Jun N-terminal kinase), p38. Conclusion: These results show that FC extract inhibits the production of pro-inflammatory cytokines such as IL-6. IL-12. NO by inhibiting NF-${\kappa}B$ activation in the peritoneal macrophages of mice. In conclusion, this experiment suggests that FC extract may be effective for the treatment of acute and chronic inflammation including genitourinary infection.

  • PDF

PKC Downstream of PI3-Kinase Regulates Peroxynitrite Formation for Nrf2-Mediated GSTA2 Induction

  • Kim, Sang-Geon;Kim, Sun-Ok
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.757-762
    • /
    • 2004
  • The protective adaptive response to electrophiles and reactive oxygen species is mediated by the induction of phase II detoxifying genes including glutathione S-transferases (GSTs). NF-E2-related factor-2 (Nrf2) phosphorylation by protein kinase C (PKC) is a critical event for its nuclear translocation in response to oxidative stress. Previously, we have shown that peroxynitrite plays a role in activation of Nrf2 and Nrf2 binding to the antioxidant response element (ARE) via the pathway of phosphatidylinositol 3-kinase (PI3-kinase) and that nitric oxide synthase in hepatocytes is required for GSTA2 induction. In view of the importance of PKC and Pl3-kinase in Nrf2-mediated GST induction, we investigated the role of these kinases in peroxynitrite formation for GSTA2 induction by oxidative stress and determined the relationship between PKC and PI3-kinase. Although PKC activation by phorbol 12-myristate-13-acetate (PMA) did not increase the extents of constitutive and inducible GSTA2 expression, either PKC depletion by PMA or PKC inhibition by staurosporine significantly inhibited GSTA2 induction by tert-butylhydroquinone (t-SHa) a prooxidant chemical. Therefore, the basal PKC activity is req- uisite for GSTA2 induction. 3-Morpholinosydnonimine (SIN-1), which decomposes and yields peroxynitrite, induced GSTA2, which was not inhibited by PKC depletion, but slightly enhanced by PKC activation, suggesting that PKC promotes peroxynitrite formation for Nrf2-mediated GSTA2 induction. Treatment of cells with S-nitroso-N-acetyl-penicillamine (SNAP), an exogenous NO donor, in combination with t-BHQ may produce peroxynitrite. GSTA2 induction by SNAP + t-BHQ was not decreased by PKC depletion, but rather enhanced by PKC activation, showing that the activity of PKC might be required for peroxynitrite formation. LY294002 a P13-kinase inhibitor blocked GSTA2 induction by t-BHQ, which was reversed by PMA-induced PKC activation. These results provide evidence that PKC may playa role in formation of peroxynitrite that activates Nrf2 for GSTA2 induction and that PKC may serve an activator for GSTA2 induction downstream of PI3-kinase.