• 제목/요약/키워드: protein kinases

검색결과 726건 처리시간 0.022초

The Catalytic Subunit of Protein Kinase A Interacts with Testis-Brain RNA-Binding Protein (TB-RBP)

  • ;길성호
    • 대한의생명과학회지
    • /
    • 제13권4호
    • /
    • pp.305-311
    • /
    • 2007
  • cAMP-dependent protein kinase A (PKA) is the best-characterized protein kinases and has served as a model of the structure and regulation of cAMP-binding protein as well as of protein kinases. To determine the function of PKA in development, we employed the yeast two-hybrid system to screen for catalytic subunit of PKA $(C\alpha)$ interacting partners in a cDNA library from mouse embryo. A Testis-brain RNA-binding protein (TB-RBP), specifically bound to $C\alpha$. This interaction was verified by several biochemical analysis. Our findings indicate that $C\alpha$ can modulate nucleic acid binding proteins of TB-RBP and provide insights into the diverse role of PKA.

  • PDF

Aberrant phosphorylation in the pathogenesis of Alzheimer's disease

  • Chung, Sul-Hee
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.467-474
    • /
    • 2009
  • The modification of proteins by reversible phosphorylation is a key mechanism in the regulation of various physiological functions. Abnormal protein kinase or phosphatase activity can cause disease by altering the phosphorylation of critical proteins in normal cellular and disease processes. Alzheimer' disease (AD), typically occurring in the elderly, is an irreversible, progressive brain disorder characterized by memory loss and cognitive decline. Accumulating evidence suggests that protein kinase and phosphatase activity are altered in the brain tissue of AD patients. Tau is a highly recognized phosphoprotein that undergoes hyperphosphorylation to form neurofibrillary tangles, a neuropathlogical hallmark with amyloid plaques in AD brains. This study is a brief overview of the altered protein phosphorylation pathways found in AD. Understanding the molecular mechanisms by which the activities of protein kinases and phosphatases are altered as well as the phosphorylation events in AD can potentially reveal novel insights into the role aberrant phosphorylation plays in the pathogenesis of AD, providing support for protein phosphorylation as a potential treatment strategy for AD.

PC12 세포주에서 Translationally Controlled Tumor Protein에 의한 Mitogen-activated Protein Kinases 활성 조절 (Regulation of Mitogen-activated Protein Kinases by Translatoinally Controlled Tumor Protein in PC12 Cells)

  • 김미연;김미영
    • 약학회지
    • /
    • 제54권5호
    • /
    • pp.323-327
    • /
    • 2010
  • Translationally controlled tumor protein (TCTP) activates basophils to release histamine and causes chronic inflammation. It was also reported that TCTP significantly reduced in brain of Alzheimer's Disease and Down Syndrome as compared to normal person, suggesting that TCTP might be involved in cognitive function. We wondered whether TCTP could act as a general inducer in neurotransmitters release in brain. We, therefore, investigated the role of TCTP in PC12 cell line which expressed neuronal properties. We found that TCTP could activate JNK, and the activity was inhibited by pretreatment of dicoumarol, a JNK inhibitor. However, TCTP could not activate ERK that has known to be involved in neurotransmitter release. These suggest TCTP did not participate in neurotransmitter release from PC12 cells, and TCTP might not be a general inducer in neurotransmitter release.

쥐 소뇌에 있어서 raf protein kinases 의 면역세포 화학적 분포와 단백질 양상 (Immunocytochemical distribution of raf protein kinases and protein pattern in rat cerebellum)

  • 박정순;최원철
    • 생명과학회지
    • /
    • 제8권1호
    • /
    • pp.14-26
    • /
    • 1998
  • 본 연구에서는 SDS/polyacrylamide 젤 전기영동에 의한 쥐의 성장과정에 따른 소뇌의 단백질양상의 변화양상과 immunocytochemistry를 이용하여 c-raf a-raf kinase의 정상 소뇌에서의 분포에 대해 관찰 하였으며 western blot을 이용하여 소뇌의 단백질들에서 c-raf의 존재에 대해 살펴보았다. 단백질 양상에서 쥐의 성장에 따라 crude에선,ㄴ 49,200 dalton과 169,000 dalton 사이의 bands가 양적 증가를 보였으며 cytosolic fraction 에서는 37,800 dalton의 band가 양적 증가를 보이는데 비해 membrane fraction 에서는 260,600 dalton의 band가 증가하였다. 이러한 결과로 성장 발달에 따라 고분자 량의 물질들이 이들 소뇌 부위에서 기여하였을 것으로 추정할 수 있었다. Immunocytochemistry에 의한 분석에서는 c-raf와 a-raf가 소뇌의 피질주위에서 조롱박 세포(Purkinje cell) 의 세포질 특히 핵 주변부위에서 강하게 검출되었으며 a-raf에 비해 c-raf가 더 강하게 나타났었다. 그리고 그 외에 Nucleus embolifornis의 큰 neuronal cell의 세포질 부위의 나타남을 볼 수 있었다. Immunoblot에 의한 분석에서는 crude와 cytosolic fraction에서 raf protein kinase의 존재를 확인할 수 있었으며, 이상의 결과들을 종합해 보았을 때 소뇌의 정상의 많은 신경세포(neuronal cell)에 raf protein kinase가 분포되어 있으며 이들이 정상의 cell에서 기능을 가질 것으로 추정된다.

  • PDF

Atypical Actions of G Protein-Coupled Receptor Kinases

  • Kurose, Hitoshi
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.390-397
    • /
    • 2011
  • G protein-coupled receptor kinases (GRKs) and ${\beta}$-arrestins have been known as regulators of G protein-coupled receptors. However, it has been recently reported that GRKs and ${\beta}$-arrestins mediate receptor-mediated cellular responses in a G proteinin-dependent manner. In this scheme, GRKs work as a mediator or a scaffold protein. Among 7 members of the GRK family (GRK1-GRK7), GRK2 is the most extensively studied in vitro and in vivo. GRK2 is involved in cellular migration, insulin signaling, and cardiovascular disease. GRK6 in concert with ${\beta}$-arrestin 2 mediates chemoattractant-stimulated chemotaxis of T and B lymphocytes. GRK5 shuttles between the cytosol and nucleus, and regulates the activities of transcription factors. GRK3 and GRK4 do not seem to have striking effects on cellular responses other than receptor regulation. GRK1 and GRK7 play specific roles in regulation of rhodopsin function. In this review, these newly discovered functions of GRKs are briefly described.

Endothelin-1에 의한 phospholipase C 활성화와 세포내 $Ca^{2+}$ 이동에 미치는 protein kinase들의 효과 (Effects of Protein Kinases on Phospholipase C Activation and Intracellular $Ca^{2+}$ Mobilization Induced by Endothelin-1)

  • 조중형;김현준;이윤혜;박진형;장용운;이승준;이준한;윤정이;김창종
    • 약학회지
    • /
    • 제44권2호
    • /
    • pp.162-168
    • /
    • 2000
  • To investigate the effects of protein kinases on endothelin-1-induced phospholipase C activation and $Ca^{2+}$ mobilization in Rat-2 fibroblast, we measured the formation of inositol phosphates and intracellular $Ca^{2+}$ concentration with [$^3$H]inositol and Fura-2/AM, respectively. Endothelin-1 dose-dependently activated phospholipase C and increased intracellular $Ca^{2+}$ concentration. Protein kinase C activator PMA, significantly inhibited both phospholipase C activity and $Ca^{2+}$ mobilization induced by endothelin-1. Tyrosine kinase inhibitor, genistein, inhibited both. On the other hand, cyclic nucleotide (cAMP and cGMP) did not have any influence on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1. These results suggest that protein kinase C and tyrosine kinase counteract on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1 in Rat-2 fibroblast. fibroblast.

  • PDF

Co-Expression of Protein Tyrosine Kinases EGFR-2 and $PDGFR{\beta}$ with Protein Tyrosine Phosphatase 1B in Pichia pastoris

  • Pham, Ngoc Tu;Wang, Yamin;Cai, Menghao;Zhou, Xiangshan;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권2호
    • /
    • pp.152-159
    • /
    • 2014
  • The regulation of protein tyrosine phosphorylation is mediated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) and is essential for cellular homeostasis. Co-expression of PTKs with PTPs in Pichia pastoris was used to facilitate the expression of active PTKs by neutralizing their apparent toxicity to cells. In this study, the gene encoding phosphatase PTP1B with or without a blue fluorescent protein or peroxisomal targeting signal 1 was cloned into the expression vector pAG32 to produce four vectors. These vectors were subsequently transformed into P. pastoris GS115. The tyrosine kinases EGFR-2 and $PDGFR{\beta}$ were expressed from vector pPIC3.5K and were fused with a His-tag and green fluorescent protein at the N-terminus. The two plasmids were transformed into P. pastoris with or without PTP1B, resulting in 10 strains. The EGFR-2 and $PDGFR{\beta}$ fusion proteins were purified by $Ni^{2+}$ affinity chromatography. In the recombinant P. pastoris, the PTKs co-expressed with PTP1B exhibited higher kinase catalytic activity than did those expressing the PTKs alone. The highest activities were achieved by targeting the PTKs and PTP1B into peroxisomes. Therefore, the EGFR-2 and $PDGFR{\beta}$ fusion proteins expressed in P. pastoris may be attractive drug screening targets for anticancer therapeutics.

Three Protein Kinases from the Etiolated Oat Seedlings Phosphorylate Oat Phytochrome A In Vitro

  • Park, Young-Il;Kim, Jae-Hun;Lee, Jae-Deok;Kim, Yong-Woo;Kim, In-Soo
    • BMB Reports
    • /
    • 제31권3호
    • /
    • pp.221-226
    • /
    • 1998
  • Phosphorylation of phytochrome may play important functional roles to control plant photomorphogenesis. Many attempts have failed to identify the protein kinase that phosphorylates phytochrome in vivo. It has been reported that a polycation-stimulated protein kinase activity was associated with the purified phytochrome. However, it is not known if the kinase activity is an intrinsic property of phytochrome or whether it comes from a contaminant of the purified phytochrome. In the present study, three protein kinases that phosphorylate phytochrome have been identified from etiolated oat seedlings. A polycationstimulated protein kinase that had very similar enzymatic properties with that associated with the purified phytochrome was identified in the cytosolic extract. It phosphorylated several contaminant proteins in the kinase preparation as well as phytochrome and had a broad substrate specificity. A CK II-type protein kinase phosphorylated phytochrome and the exogenously added casein. It is likely that this kinase may not be a feasible candidate for the kinase phosphorylating phytochrome in vivo since the content of the kinase seemed to well exceed the content of phytochrome in the etiolated oat seedlings. Another protein kinase that had unique enzymatic properties phosphorylated phytochrome very specifically and seemed to be present in a small quantity in the etiohlted seedlings. It is expected that one of three kinases may be responsible for the phytochrome phosphorylation in vivo.

  • PDF

Inhibitory Effects of Saururus Chinensis Extracts on Osteoclast Differentiation

  • Shim, Ki-Shuk;Kim, Soon-Nam;Kim, Myung-Hee;Kim, Young-Sup;Ryu, Shi-Yong;Min, Yong-Ki;Kim, Seong-Hwan
    • Natural Product Sciences
    • /
    • 제14권2호
    • /
    • pp.113-117
    • /
    • 2008
  • Saururus chinensis is a commonly used folk herb for the treatment of edema and liver diseases in Korea. To study the biological activity of Saururus chinensis in bone metabolism, we evaluated the effect of its extracts on osteoclast differentiation in vitro using primary mouse bone marrow-derived macrophages. Methanol extract (ME) from dried roots of Saururus chinensis was partitioned into methylene chloride (MF), ethyl acetate (EF), n-butanol (BF) and water fractions (WF). Tartrate-resistance acid phosphatase (TRAP) activity assay and western blot analysis were performed to determine the effect on osteoclast differentiation and mitogen-activated protein (MAP) kinases activation. ME, MF and EF dramatically inhibited receptor activator of ${NF-kB}$ ligand (RANKL)-induced formation of multinucleated osteoclasts and activation of MAP kinases. This study firstly demonstrated that ME, MF and EF of Saururus chinensis have the potential to inhibit the osteoclast differentiation, which results from the inhibition of MAP kinases activations in part.

Apoptotic Signaling Pathways: Caspases and Stress-Activated Protein Kinases

  • Cho, Ssang-Goo;Choi, Eui-Ju
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.24-27
    • /
    • 2002
  • Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.