• 제목/요약/키워드: protein hydrolysis condition

검색결과 61건 처리시간 0.028초

Physiological Relevance of Salt Environment for in vitro recA System

  • Kim, Jong-Il
    • Journal of Microbiology
    • /
    • 제37권2호
    • /
    • pp.59-65
    • /
    • 1999
  • RecA protein can promote strand assimilation, homologous pairing, and strand exchange. All these reactions require DNA-dependent ATP hydrolysis by recA protein, and the activities of recA protein are affected by the ionic environment. In this experiment, DNA-dependent ATPase activity showed different sensitivity to anionic species. ATP hydrolysis and strand exchange were relatively sensitive to salt in the reactions with NaCl, strongly inhibited at 100 mM NaCl. However, the inhibition by sodium acetate or sodium glutamate was not observed at 50∼100 mM concentration. Addition of sodium glutamate to the standard reaction condition increased the apparent efficiency of ATP hydrolysis during strand exchange. The condition including 50∼100 mM sodium-glutamate might be similar to the physiological condition.

  • PDF

Angiotensin I Converting Enzyme Inhibitory Activity of Krill (Euphausia superba) Hydrolysate

  • Kim Dong-Soo;Park Douck-Choun;Do Jeong-Ryong
    • Fisheries and Aquatic Sciences
    • /
    • 제5권1호
    • /
    • pp.21-27
    • /
    • 2002
  • Angiotensin I converting enzyme inhibitory activities of shelled krill (Euphausia superba) hydrolysates by autolysis and by hydrolysis with commercial proteases were analyzed. Among the proteases, Alcalase was the most effective protease for the hydrolysis of krill considering the degree of hydrolysis $(87.5\%)$ and the ACE inhibitory activity $(60\%)$. Four hour hydrolysis suggested as the most suitable and economic. In order to establish the optimum hydrolysis condition of krill, degree of hydrolysis and ACE inhibitory activity as affected by Alcalase concentration and water amount added were statistically analyzed by response surface methodology (RSM). The optimum hydrolysis condition was $2.0\%$ Alcalase hydrolysis in 2 volumes (v/w) of water at $55\% for 4 hr. The hydrolysate prepared from the optimum hydrolysis condition was fractionated by molecular weight. The lower molecular weight fraction showed the higher ACE inhibitory activity. $IC_{50}$ of the fraction under 500 Da was 0.57mg protein/mL.

Study on Extraction of Mucopolysaccharide-protein Containing Chondroitin Sulfate from Chicken Keel Cartilage

  • Shin, S.C.;You, S.J.;An, B.K.;Kang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권4호
    • /
    • pp.601-604
    • /
    • 2006
  • The objective of this study was to investigate technical methods for extraction of mucopolysachharide-protein containing chondroitin sulfate from keel cartilage of chickens. The chemical composition of chicken keel cartilage was determined. For the preparation of mucopolysaccharide-protein from lyophilized chicken keel cartilage, hot water extraction and alcalase hydrolysis methods were examined. Results showed that the optimum condition of hot water extraction was incubation for 120 min with a yield of 40.09% and chondroitin sulfate content of 28.46%. For alcalase hydrolysis, the most effective condition was 2% alcalase in 10 volumes of distilled water for 120 min. The yield of hydrolysate was 75.87%, and chondroitin sulfate content was 26.61%. For further separation of chondroitin sulfate from the alcalase hydrolysate, which has a higher yield than that of hot water, 60% ethanol precipitation was performed. The yield of the ethanol precipitate was 21.41% and its chondroitin sulfate content was 46.31%. The hot water extract, alcalase hydrolysate and ethanol precipitate showed similar electrophoretic migration with standard chondroitin sulfate (chondroitin sulfate A), using cellulose acetate membrane electrophoresis. These results indicated that a significant amount of mucopolysaccharide-protein containing chondroitin sulfate could be acquired form chicken keel cartilage. Therefore, keel cartilage in chicken may provide an inexpensive source of chondroitin sulfate for commercial purposes.

조, 수수 및 기장의 단백질 특성 (Characteristics of Proteins in Italian Millet, Sorghum and Common Meillet)

  • 하영득;이삼빈
    • 한국식품저장유통학회지
    • /
    • 제8권2호
    • /
    • pp.187-192
    • /
    • 2001
  • Amino acid composition of proteins in Italian millet, Common millet and sorghum were invstigated by HCI hydrolysis method. The optimum condition was obtained by hydrolysis at 110$\^{C}$ for 24hr. As major amino acids from protein hydrolyzate, the content of tyosine, arginine and phebylalanine were 7.06%, 6.79% and 6.44%, respectively. The content of glutamic acid in Common millet, Italian millet and Sorghum were 5.73%, 5.64% and 5.46%, respectively. Glycine content was about 2.93% in three samples. Contents of crude protein and pure protein in Italian millet, Common millet and sorghum were determined by micro-kjeldahl method. Crude protein contents were slightly higher than that of pure protein. Protein content of sorghum was higher than those of Italian millet and Common millet. For SDS-PAGE analysis, Italian millet showed more soluble proteins including 50kDa, 30kDa and smaller proteins than other cereals. In particular, Common millet and Sorghum only solubilized proteins less than 15kDa.

  • PDF

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.224-230
    • /
    • 2006
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.

효소에 의한 참깨박 단백질의 최적 가수분해 조건 (Optimal Conditions for the Enzymatic Hydrolysis of Isolated Sesame Meal Protein)

  • 이선호;조영제;김성;안봉전;최청
    • Applied Biological Chemistry
    • /
    • 제38권3호
    • /
    • pp.248-253
    • /
    • 1995
  • 참깨박 단백질의 기능개선을 위한 가수분해 조건을 검토한 결과 분리된 참깨박단백질에 대한 각 효소의 최적작용조건은 papain의 경우 pH 6.0, $60^{\circ}C$,효소 대 기질의 비는 기질량에 대해 3%, 기질농도 1.5%에서 최적이었으며, pepsin은 pH 2.0, $50{\sim}60^{\circ}C$, 효소의 농도는 기질량에 대해 3%, 기질농도 1%에서 최적이었다. 그리고 trypsin은 pH 9.0, $60^{\circ}C$, 효소의 농도는 기질량에 대해 1%, 기질의 농도 1%에서 가장 높은 효소작용을 보였다.

  • PDF

건조 및 저장조건에 따른 쌀 저장단백질의 변화양상 (Changes of Rice Storage Proteins Affected by Dry and Storage Temperature)

  • 신평균;장안철;홍성창;이기상;이금희;이용복
    • 한국환경농학회지
    • /
    • 제27권4호
    • /
    • pp.456-459
    • /
    • 2008
  • Quality of rice grain changes during dry storage with internal physiological changes and external injury by organism. Storage rice changes by condition with respiration via variable temperature, hydrolysis enzyme reaction, lipid peroxidation occurs with change of palatability. During dry storage, physiological change with protein variation pattern was examined by image analysis on proteomic technology. Analysis revealed that protein activity had no change store at room temperature and store at $40^{\circ}C$, but decreased store at $60^{\circ}C$. Analysis of variable hydrophobic protein pattern revealed that protein activity of beta-tubulin, protein disulfide isomerase, vacuolar ATPase b subunit, globulin was not significantly decreased all dry and store condition. However, heat shock protein 70, and glutathione transferase was significantly decreased when rice dried at $60^{\circ}C$ compared with room temperature and $40^{\circ}C$ dry condition.

Optimization of Alcalase for Krill Byproduct Hydrolysis and Antioxidative Activities by Response Surface Methodology

  • Kim, Kyoung-Myo;Lee, Da-Sun;Nam, Min-Hee;Yoo, Hong-Seok;Kim, Seon-Bong;Chun, Byung-Soo;Lee, Yang-Bong
    • Preventive Nutrition and Food Science
    • /
    • 제15권4호
    • /
    • pp.316-321
    • /
    • 2010
  • Krill byproduct was hydrolyzed with Alcalase 2.4L to produce functional ingredients for high antioxidative activities against 1,1-dimethyl-2-picryl-hydrazyl (DPPH) radical and Fe. The objective of this study was to investigate the optimum condition for degree of hydrolysis and antioxidative activity of enzymatic hydrolysate produced with the commercial Alcalase using response surface methodology (RSM) with a central composite rotatable design (CCRD). The ranges of independent variables were pH 7.6~10.4 for initial pH and $50.9{\sim}79.1^{\circ}C$ for hydrolysis temperature and their dependent variables were degree of hydrolysis, Brix, amount of phenolic compounds, DPPH-scavenging activity and Fe-chelating activity. RSM with CCRD was well designed to investigate the optimum condition for functional ingredients with high antioxidative activities using Alcalase 2.4L because of their high $R^2$ values of the range of 0.93~0.99 except the $R^2$ value of 0.50 for the amount of total phenolic compounds. The optimum hydrolysis conditions were pH 9.5 and $62^{\circ}C$ for degree of hydrolysis (DH) and pH 9.1 and $64^{\circ}C$ for DPPH-scavenging activity by response surface methodology. The yield of DH and DPPH-scavenging activity were $14.1{\pm}0.5%$ and $10.5{\pm}0.2%$, respectively. It is advantageous to determine the optimum hydrolysis conditions of krill and its by-products for the creation of different kinds of food products, as well as to increase the usage of marine protein sources.

효소분해조건에 따른 돈혈의 식품학적 품질 특성 변화 (Changes in physicochemical characteristics of porcine blood under various conditions of enzyme hydrolysis)

  • 박주영;김미연;정용진
    • 한국식품저장유통학회지
    • /
    • 제23권3호
    • /
    • pp.413-421
    • /
    • 2016
  • 본 연구는 폐기되는 돈혈을 식품소재로 활용하고자 단백질 가수분해효소 5종을 처리하여 품질특성 변화를 조사하였다. 그 결과 KMFP-15(E)로 가수분해할 때 pH 7.3, 총 고형분 함량 $24.3^{\circ}Brix$ 및 유리아미노산 함량 4,944 mg%로 가장 높은 고형분 함량 및 유리아미노산 함량을 나타내었다. KMFP-15(E) 농도에 따른 영향을 조사한 결과 처리농도가 증가함에 따라 총 고형분 함량 및 유리아미노산이 증가하였으며, 유리아미노산은 KMFP-15(E) 0.2% (w/v)첨가구에서 7,224 mg%로 0.3% (w/v)첨가구와 유의적인 차이를 나타내지 않아 0.2% (w/v)로 설정하였다. KMFP-15(E)의 가수분해 시간에 따라 유리아미노산 함량은 4시간에서 7,404 mg%로 가장 높게 나타났으며, 시간이 경과할수록 감소하는 경향을 보여 최적 가수분해시간은 4시간으로 설정하였다. 상기 설정된 가수분해 조건을 통해 제조된 돈혈 분말(PBHP)에는 조단백질 및 아미노산과 철분, 칼륨, 아연 등 다량의 무기질이 함유되어 있는 것으로 나타났으며 특히, 철분의 함량은 1,983 mg%로 높게 나타나 식품소재로 활용 가능한 것으로 나타났다. 이상의 결과 폐기되는 돈혈의 활용방안으로 다양한 가수분해조건중 효소 KMFP-15(E) 0.2% (w/v)를 첨가하여, 4시간에서 가수분해 하였을 때 전반적 품질 특성이 가장 우수하여 향후 돈혈을 이용해 단백질 보충, 아미노산소재 및 철분강화제 등의 식품 및 의약품 소재로의 고부가가치 창출이 가능할 것으로 판단되었다.

Alkaline Protease를 이용한 Corn Gluten Meal의 효소가수분해 반응특성 및 반응속도론적 분석 (Reaction Characteristics and Kinetic Analysis of Enzymatic Hydrolysis of Corn Gluten Meal Using Alkaline Protease)

  • 김성진;이은규남충희
    • KSBB Journal
    • /
    • 제10권5호
    • /
    • pp.540-546
    • /
    • 1995
  • bacterial alkaline protease를 이 용한 corn glu ten meal의 효소가수분해시 pH, 온도, 효소대 기질의 질량비율 등에 따른 반응특성 및 반응의 적정화 를 꾀하였고, 효소의 deactivation여부에 초점을 맞추어 효소반응속도론적 방정식을 제안조사하였다. 그 결과,$50^{\circ}C$, pH 9~10에서 가장 높은 가수분해 도를 나타내었고 $e_0/s_o$가 높을수록 반응속도 빛 최종 가수분해도가 증가하였다. 최종가수분해도는 gluten meal전체질량기준으로 17~20%, gluten meal내의 단백질질량기준으로 25 ~ 28 % 였다. 반응후반에서의 반응속도감소의 주된 원인은 기 질소진 (substrate de pletion) 이며 이때 enzyme deactivation 및 product inhibition의 영향은 미미한 것으로 확인되었다. 효소 deactivation항을 무시하여 변형시킨 model equa-tlOn에 의해 이 효소반응에 해당하는 여러 kinetic parameter들의 값을 계산분석한 결과 product inhi bition효과가 미미함을 확인하였다. 변형된 kinetic equation과 실험적으로 얻은 가수분해 데이타는 거 의 완벽하게 일치하였다. 효소반응을 $100\times$scale­u up한 결과 가수분해 profile 및 가수분해도는 $1\times$ 와 비교시 거의 일치하였으므로 이 효소반응이 용이하 게 scale-up될 수 있음을 확인하였고, 아미노산분석 결과 가수분해액을 미생물발효기질용 질소원으로 사 용할 수 있음을 제시하였다.

  • PDF