• Title/Summary/Keyword: protein hydrolysate

Search Result 257, Processing Time 0.027 seconds

Nutritional Value and Bioactive Properties of Enzymatic Hydrolysates prepared from the Livers of Oncorhynchus keta and Oncorhynchus gorbuscha (Pacific Salmon)

  • Yoon, Ho Dong;Karaulova, Ekaterina P.;Shulgina, Lilia V.;Yakush, Evgeni V.;Mok, Jong Soo;Lee, Su Seon;Xie, Chengliang;Kim, Jeong Gyun
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • Calculated chemical scores (computed in relation to the FAO/WHO reference protein) for salmon liver protein hydrolysates indicated that all amino acids (other than methionine and threonine) were present in adequate or excess quantities; thus, the raw liver material is a good source of essential amino acids. The hydrophobic amino acids contents in hydrolysates prepared from Oncorhynchus keta and O. gorbuscha were 38.4 and 39.1%, respectively. The proportion of released peptides exceeding 500 kDa was reduced when hydrolysates were treated with the commercial enzyme Alcalase, although proportions in the following MW ranges were elevated: 100-500 kDa and <50 kDa. The optimal conditions for enzymatic hydrolysis were as follows: pH 7.0, $50^{\circ}C$, and a reaction time of 1 h. Of the different proteases tested, Alcalase was the most efficient for production of salmon liver hydrolysate with the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity. The hydrolysates prepared from salmon liver had a balanced amino acid composition. The liver protein hydrolysates contained low molecular weight peptides, some of which may be bio-active; this bio-active potential should be investigated. Inhibition of the DPPH radical increased with increased degree of hydrolysis (DH), regardless of protease type. DPPH radical scavenging abilities, antithrombotic effects and ${\alpha}$-glucosidase enzyme inhibition effects of O. keta liver hydrolysate increased in a dose-dependent manner. Thus, salmon liver hydrolysate may be useful in functional food applications and as a source of novel products.

Submerged Monoxenic Culture Medium Development for Heterorhabditis bacteriophora and its Symbiotic Bacterium Photorhabdus luminescens: Protein Sources

  • Cho, Chun-Hwi;Whang, Kyung-Sook;Gaugler, Randy;Yoo, Sun-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.869-873
    • /
    • 2011
  • Most medium formulations for improving culture of entomopathogenic nematodes (EPN) based on protein sources have used enriched media like animal feed such as dried egg yolk, lactalbumin, and liver extract, among other ingredients. Most results, however, showed unstable yields and longer production time. Many of the results do not show the detailed parameters of fermentation. Soy flour, cotton seed flour, corn gluten meal, casein powder, soytone, peptone, casein hydrolysates, and lactalbumin hydrolysate as protein sources were tested to determine the source to support optimal symbiotic bacteria and nematode growth. The protein hydrolysates selected did not improve bacterial cell mass compared with the yeast extract control, but soy flour was the best, showing 75.1% recovery and producing more bacterial cell number ($1.4{\times}10^9$/ml) than all other sources. The highest yield ($1.85{\times}10^5$ IJs/ml), yield coefficient ($1.67{\times}10^6$ IJs/g medium), and productivity ($1.32{\times}10^7$ IJs/l/day) were also achieved at enriched medium with soybean protein.

Preparation of enzymatic hydrolysate from defatted perilla seed residue and its application to Leuconostoc mesenteroides cultivation (탈지 들깨박 효소분해물의 제조와 Leuconostoc mesenteroides 배양에의 활용)

  • Shin, Yeung Sub;Lee, Tae Jung;In, Man-Jin;Kim, Dong Chung
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.97-102
    • /
    • 2021
  • In this study, enzymes were screened for hydrolysis of defatted perilla seed residue (DPSR) and optimal conditions for enzymatic treatment were determined to produce the hydrolysate of DPSR. Also its antioxidant activity and utilization as a culture medium were examined. The combined treatment of Alcalase and Ceremix is most effective for solubilization of protein and carbohydrate in DPSR. The optimal dosage, pH, and reaction time for enzymatic treatment were found to be 2.0% (w/w), 7.0, and 2 h, respectively. Treatment with optimal conditions of enzymes dramatically increased reducing sugar, soluble protein, and total phenolic content. The hydrolysate of DPSR possessed better scavenging activity against cation and free radicals than enzyme-untreated extract. When Leuconostoc mesenteroides 310-12 was cultured in the hydrolysate of DPSR, cell population rapidly increased compared to enzyme-untreated extract, and titratable acidity increased in proportion to the bacterial growth. In conclusion, these results imply that the hydrolysate of DPSR could be utilized as a bacteria culture medium as well as a physiologically active material with antioxidant activity.

Antioxidant Effect and Functional Properties of Hydrolysates Derived from Egg-White Protein

  • Cho, Dae-Yeon;Jo, Kyungae;Cho, So Young;Kim, Jin Man;Lim, Kwangsei;Suh, Hyung Joo;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.362-371
    • /
    • 2014
  • This study utilized commercially available proteolytic enzymes to prepare egg-white protein hydrolysates (EPHs) with different degrees of hydrolysis. The antioxidant effect and functionalities of the resultant products were then investigated. Treatment with Neutrase yielded the most ${\alpha}$-amino groups (6.52 mg/mL). Alcalase, Flavourzyme, Protamex, and Ficin showed similar degrees of ${\alpha}$-amino group liberation (3.19-3.62 mg/mL). Neutrase treatment also resulted in the highest degree of hydrolysis (23.4%). Alcalase and Ficin treatment resulted in similar degrees of hydrolysis. All hydrolysates, except for the Flavourzyme hydrolysate, had greater radical scavenging activity than the control. The Neutrase hydrolysate showed the highest 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity ($IC_{50}=3.6mg/mL$). Therefore, Neutrase was identified as the optimal enzyme for hydrolyzing egg-white protein to yield antioxidant peptides. During Neutrase hydrolysis, the reaction rate was rapid over the first 4 h, and then subsequently declined. The $IC_{50}$ value was lowest after the first hour (2.99 mg/mL). The emulsifying activity index (EAI) of EPH treated with Neutrase decreased, as the pH decreased. The EPH foaming capacity was maximal at pH 3.6, and decreased at an alkaline pH. Digestion resulted in significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ABTS radical scavenging activity. The active peptides released from egg-white protein showed antioxidative activities on ABTS and DHHP radical. Thus, this approach may be useful for the preparation of potent antioxidant products.

Optimization and production of protein hydrolysate containing antioxidant activity from tuna cooking juice concentrate by response surface methodology

  • Kiettiolarn, Mookdaporn;Kitsanayanyong, Lalitphan;Maneerote, Jirawan;Unajak, Sasimanas;Tepwong, Pramvadee
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.6
    • /
    • pp.335-349
    • /
    • 2022
  • To optimize the hydrolysis conditions in the production of antioxidant hydrolysates from tuna cooking juice concentrate (TC) to maximize the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, TC containing 48.91% protein was hydrolyzed with Alcalase 2.4 L, and response surface methodology (RSM) was applied. The optimum hydrolysis conditions included a 2.2% (w/v) Alcalase concentration and 281 min hydrolysis time, resulting in the highest DPPH radical scavenging activity of 66.49% (0.98 µmol Trolox/mg protein). The analysis of variance for RSM showed that hydrolysis time was an important factor that significantly affected the process (p < 0.05). The effects of different drying methods (freeze drying, hot air drying, and vacuum drying) on the DPPH radical scavenging activity and amino acid (AA) profiles of TC hydrolysate (TCH) were evaluated. Vacuum-dried TCH (VD) exhibited an increase in DPPH radical scavenging activity of 81.28% (1.20 µmol Trolox/mg protein). The VD samples were further fractionated by ultrafiltration. The AA profiles and antioxidant activities in terms of the DPPH radical scavenging activity, 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, ferric reducing antioxidant power, and ferrous ion chelating activity were investigated. Glutamic acid, glycine, arginine, and cysteine were the major AAs found in the TCH fractions. The highest DPPH radical scavenging activity was found in the VD-1 fraction (< 5 kDa). The VD-3 fraction (> 10 kDa) exhibited the highest ABTS radical scavenging activity and ferric reducing antioxidant power. The ferrous ion chelating activity was the highest in VD-1 and VD-2 (5 to 10 kDa). In conclusion, this study provided the optimal conditions to obtain high antioxidant activities through TCH production, and these conditions could provide a basis for the future application of TCH as a functional food ingredient.

A Study on Development of Protein Materials using Dead Flatfish from Fish Farms(1) -Antioxidant Functional Properties- (양식장 넙치 폐사어를 이용한 단백질 소재의 개발에 관한 연구(1) -항산화 기능특성-)

  • Kang, Keon-Hee;Lee, Min-Gyu;Kam, Sang-Kyu;Jeong, Kap-Seop
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1465-1471
    • /
    • 2013
  • To develop the protein materials by the reutilization of dead flatfish from fish farms in Jeju island, the physicochemical characteristics and the functional activities of collagen peptide extracts were investigated. Flatfish skin collagen peptide (FSCP) and flatfish protein hydrolysate (FPH) were manufactured from dead flatfish. The differences of pH, moisture and fat contents between FSCP and FPH were not significant, fat contents were analyzed less than 0.3%, and trans-fat, saturated fat and cholesterol were not detected in both samples. Protein contents of FSCP and FPH showed about 92% and 95%, respectively. In the analysis of amino acids, glycine and hydroxy proline content in FSCP was 24.22% and 6.15%, respectively, showed a typical characteristics of the collagen protein, but essential amino acids contents such as threonine, valine, methionine, isoleusine, leusine and phenylalanine were relatively higher than those of FPH. Average molecular weight of FSCP was measured as 1,102 which was almost equal value with that of tuna collagen peptide. The antioxidant activities and functional properties showed high but did not show significant difference between two samples.

Development of hypothermic preservation solution for the human dermal fibroblast using protein hydrolysates (단백질 가수분해 물을 이용한 인간 피부 섬유아세포의 저온 보존액 개발)

  • Byoun, Soon-Hwi;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.312-320
    • /
    • 2009
  • Stable cell preservation is an essential factor in the regenerative medicine for cell therapies and transplantation of biologic materials. In this study, we studied to provide more stable hypothermic preservation by protection of cell damage during the preservation at $4^{\circ}C$. The result of searching for key components that have excellent efficacy in hypothermic preservation of cells, we have identified the fact that the hypothermic preservation adding protein hydrolysates such as yeast hydrolysate is far superior to others. All protein hydrolysates that are derived from animal, plant and microbe sources have superior efficacy, especially the peptides which have molecular weights under 10 kDa have the best efficacy among the components of protein hydrolysate. The protein hydrolysates prevented the decrease of ATP level in the cells caused by hypothermic environment and they inhibited the generation of ROS. Adding antioxidants and control agents of osmotic pressure were showed to have more superior efficacy in hypothermic preservation. Finally, KUL261 solution (DMEM/F12 1 : 1 medium, yeastolate 1%, $\alpha$-tocopherol $100{\mu}M$, dextran 2.5%), the preservation solution developed in this study, showed the best efficacy in both cell viability and cell growth more than other conventional preservation solutions. In conclusion, the improved hypothermic preservation solution that contains the protein hydrolysates as a key component provide the best preservation efficacy. It provides better efficacy than other preservation solutions and will contribute to both the development of regenerative medicine and global commercialization in this therapeutic field.

Production of Angiotensin-I Converting Enzyme Inhibitory Hydrolysates from Egg Albumen

  • Kim, H.S.;Ham, J.S.;Jeong, S.G.;Yoo, Y.M.;Chae, H.S.;Ahn, C.N.;Lee, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1369-1373
    • /
    • 2003
  • ACE (Angiotensin-I converting enzyme) inhibitory peptides derived from foods are thought to suppress high blood pressure by inhibiting ACE. We tried to make efficient production of the ACE inhibitory hydrolysate from egg albumen. A hydrolysate digested by neutrase presented the highest ACE inhibitory activity ($IC_50\;value=256.35{\mu}g/ml$) and the proper proteolysis was occurred by 1.0% enzyme addition and 4 h incubation at $47^{\circ}C$. Antihypertensive effect of neutrase hydrolysate was investigated in spontaneously hypertensive rats (SHR, n=5). Systolic blood pressure (SBP) was decrease by 6.88% (-14.14 mmHg, p<0.05) at 3 h after oral administration of 300 mg/kg body weight, and by 13.33% (-27.72 mmHg, p<0.05) by emulsified hydrolysate. These results showed that it is very effective to utilize egg albumen as a protein source for the production of ACE inhibitory peptides. However, further studies are required to investigate the methods to increase recovery yield and the isolation of active peptide is necessary for determining its sequence responsible for ACE inhibitory activity.

Process Development for the Recovery of Sialic Acid Fraction by Enzymatic Hydrolysis of Egg Yolk Protein (난황 단백질의 효소 가수분해에 의한 sialic acid의 회수 공정 개발)

  • Kang Byung Chul;Lee Kwang Hyun
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.9-14
    • /
    • 2005
  • Batch enzymatic hydrolysis of egg yolk protein by protease was carried out at laboratory scale coupled to an ultrafiltration module. Effect of ethanol concentrations on the performance of enzymatic hydrolysis was studied to determine the optimum condition of recovery of hydrolysate. The enzymatic hydrolysis was conducted stepwise with following conditions, $50^{\circ}C$, pH 10.0 and pH 6.5. Ethanol concentration was changed from 10 to $40\%$ (w/w). As ethanol concentration was increased, the recovery yield of total solid and protein in enzymatic hydrolysate was also increased. The content of sialic acid and protein in hydrolysate was independent of ethanol concentration. We also investigated the effect of ethanol concentration on the performance of ultrafiltration. As the concentration of ethanol in yolk protein was increased, the recovery yield of product was increased. Ultra­filtration of egg yolk protein hydrolysate was conducted to increase the content of sialic acid. Four ultrafiltation modules were used in this study, and we evaluated the performance of the UF modules. When Amicon module was used, the recovery percentage of total solid in retentate was $6.0\%$, which is the highest among the modules used. In spite of the difference in the recovery yield of total solid, the purity of sialic acid in retentate was about $2.0\%$, which was 5 times higher than that in feed. It was concluded that the recovery yield and the purity of sialic acid did not correlate with the types of modules and the size of MWCO.