• Title/Summary/Keyword: protein gelation

Search Result 52, Processing Time 0.034 seconds

Effects of ${\beta}$-Conglycinin and Glycinin on Thermal Gelation and Gel Properties of Soy Protein

  • Kang, Il-Jun;Lee, Young-Sook
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • Dynamic shear moduli of isolated soy protein solutions upon heating were measured to monitor gelation. Onsets of gelation coincide with onset temperatures of denaturation in glycinin and ${\beta}$-conglycinin solutions, whereas in isolated soy proteins, onset of gelation was above denaturation temperature of ${\beta}$-conglycinin with storage modulus increasing in two steps. The first increase in storage modulus of isolated soy proteins occurred at about $78.5^{\circ}C$, while the second increase started at about $93^{\circ}C$. Gel properties of soy protein gels having different proportions of glycinin and ${\beta}$-conglycinin were measured by compression-decompression test. ${\beta}$-conglycinin was responsible for gel elasticity. Glycinin significantly increased hardness, toughness, and fracturability of gels at high heating temperature near $100^{\circ}C$. Results reveal texture of soy protein gels can be controlled by regulating ratio of glycinin to ${\beta}$-conglycinin and heating temperature.

Heat-Induced Denaturation of Salt Soluble Protein Extracted from Spent Layer Meat (산란 노계육에서 추출한 염용성 단백질의 열변성에 관한 연구)

  • 이성기;장호선;김희주
    • Food Science of Animal Resources
    • /
    • v.18 no.3
    • /
    • pp.209-215
    • /
    • 1998
  • Effects of protein concentration, ionic strength, pH, and temperature range on the heat-induced denaturation of salt soluble protein extracted from spent layer meat were investigated. Viscosity of salt soluble protein heated at 65$^{\circ}C$ for 30 min began to increase sharply above 7 mg/ml of breast protein concentration, and above 21 mg/ml of leg protein concentration, respectively. Both turbidity and viscosity showed the highest value in cooked protein solution with pH 6.0 and 1% NaCl. The turbidity of salt soluble protein started to increase continuously from 40$^{\circ}C$ to 80$^{\circ}C$. The viscosity increased rapidly from 45$^{\circ}C$ to 60$^{\circ}C$ in breast protein, and increased from 50$^{\circ}C$ to 55$^{\circ}C$ in leg protein, respectively, and then kept relatively constant. Breast protein had higher viscosity than leg protein during heat-induced gelation. Therefore, salt soluble protein from spent layer meat was associated with denatured protein (turbidity change) prior to gelation (viscosity change) during heating. Breast protein showed lower thermal transition temperature, and better gel formation than leg protein during heating.

  • PDF

Evaluation of Gelation Properties of Salt-Soluble Proteins Extracted from Protaetia brevitarsis Larvae and Tenebrio molitor Larvae and Application to Pork Myofibrillar Protein Gel System

  • Ji Seon Choi;Geon Ho Kim;Ha Eun Kim;Min Jae Kim;Koo Bok Chin
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1031-1043
    • /
    • 2023
  • The purpose of this study was to investigate the functional properties of salt-soluble proteins obtained from Protaetia brevitarsis (PB) and Tenebrio molitor (TM) larvae, the interaction between these proteins and pork myofibrillar protein (MP) in a gel system. The gel properties of salt-soluble protein extracts showed that the PB had a higher viscosity than the TM protein. However, the TM protein had higher gel strength compared with the PB protein. The gelation characteristics of the pork MP gel systems added with lyophilized insect salt-soluble protein powder showed to decrease slightly viscosity compared with MP alone. Adding the TM or PB protein powder did not affect the pork MP's hydrophobicity and sulfhydryl group levels. Furthermore, the protein bands of the MP did not change with the type or amount of insect salt-soluble protein. The cooking yields of the pork MP gels containing PB or TM protein powder were higher than those without insect protein. Regardless of the type of insect salt-soluble protein added, the pork MP's gel strength decreased. Furthermore, as the level of insect powder increased, the surface protein structure became rough and porous. The results demonstrated that proteins extracted from PB and TM larvae interfered with the gelation of pork MP in a gel system.

Moisture-dependent Gelation Characteristics of Nonfish Protein Affect the Surimi Gel Texture (수분에 의존하는 단백질의 특성이 어묵의 조직에 미치는 영향)

  • Chung, Kang-Hyun;Lee, Chong-Min
    • Korean journal of food and cookery science
    • /
    • v.12 no.4
    • /
    • pp.571-576
    • /
    • 1996
  • The moisture-dependent gelation characteristics of five different proteins are evaluated to understand the modification of gel strength when they are added in surimi gel. Compressive force and penetration force of protein gels gradually decreased with increase of moisture level, with showing markedly decrease at certain point of moisture level called critical moisture level. The critical moisture level for gelation of SPI-1, SPI-2, EW, WPC and LA were 79.4%, 81.6%, 91.4%, 87,8% and 84.7%, respectively. Beyond this critical level of water, protein gel matrix begins to lose its water binding and structural integrity. The mnisture that was not re tained by a protein was available to diluting the protein matrix and eventually weakened the overall gel strength. EW and MPI showed higher water retention than those of SPI, WPC and LA. The compressive force of SPI, WPC and LA-incorporated surimi gel at the varying moisture levels strongly correlated with the amount if water retained at corresponding moisture level within those protein (r=0.99).

  • PDF

Evaluation of Salt, Microbial Transglutaminase and Calcium Alginate on Protein Solubility and Gel Characteristics of Porcine Myofibrillar Protein

  • Hong, Geun-Pyo;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.746-754
    • /
    • 2010
  • Response surface methodology was adopted to model and optimize the effects of microbial transglutaminase (TG) and calcium alginate (CA) systems of various ratios on the gelation characteristics of porcine myofibrillar protein (MP) at various salt levels. The CA system consisting of sodium alginate (SA), calcium carbonate (CC) and glucono-$\delta$-lactone (GdL) showed no remarkable changes in the salt-soluble fraction, and only minor effects on electrostatic interactions were observed. Increasing CA concentration caused acid-induced hydrophobic interactions in MPs, resulting in increased MP gel strength. The TG system, containing TG and sodium caseinate (SC), induced cold-set MP gelation by formation of covalent bonding. The main advantage of the combined system was a higher cooking yield when the MP gel was heated. These results indicated that 0.7% TG combined with 0.8% CA system can form a viscoelastic MP gel, regardless of salt levels.

Comparison of Soy and Pea Protein for Cultured Meat Scaffolds: Evaluating Gelation, Physical Properties, and Cell Adhesion

  • Do Hyun Kim;Seo Gu Han;Su Jin Lim;Seong Joon Hong;Hyuk Cheol Kwon;Hyun Su Jung;Sung Gu Han
    • Food Science of Animal Resources
    • /
    • v.44 no.5
    • /
    • pp.1108-1125
    • /
    • 2024
  • Cultured meat is under investigation as an environmentally sustainable substitute for conventional animal-derived meat. Employing a scaffolding technique is one approach to developing cultured meat products. The objective of this research was to compare soy and pea protein in the production of hydrogel scaffolds intended for cultured meat. We examined the gelation process, physical characteristics, and the ability of scaffolds to facilitate cell adhesion using mesenchymal stem cells derived from porcine adipose tissue (ADSCs). The combination of soy and pea proteins with agarose and agar powders was found to generate solid hydrogels with a porous structure. Soy protein-based scaffolds exhibited a higher water absorption rate, whereas scaffolds containing agarose had a higher compressive strength. Based on Fourier transform infrared spectroscopy analysis, the number of hydrophobic interactions increased between proteins and polysaccharides in the scaffolds containing pea proteins. All scaffolds were nontoxic toward ADSCs, and soy protein-based scaffolds displayed higher cell adhesion and proliferation properties. Overall, the soy protein-agarose scaffold was found to be optimal for cultured meat production.

Ultrasonic Velocity and Absorption Measurements in Egg White

  • Kim, Jeong-Koo;Bae, Jong-Rim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.126-131
    • /
    • 2002
  • Ultrasonic measurements are made in egg white to study the properties of the solution of the natural protein. The high-Q ultrasonic resonator method is used to get the ultrasonic absorption spectra over the range 0.2-10 ㎒ at 20℃. It is proportional to the 1.25th power of the frequency. The gelation process caused by heat is studied from the change in the velocity and the absorption. at 3 ㎒ using the pulse echo overlap technique over the range of 10-80℃. The absorption decreases with increasing temperature up to 60℃ where it turns up sharply and rapidly increases thereafter. The strong absorption in the gel region is described by the interaction between the solution and the network structure made of protein. Very slow variation in time elapse is observed after the temperature is quickly raised. It would be a real-time observation of the network building process and the characteristic time for the process is shown to be 400 min. A hysteresis phenomenon with respect to the temperature is observed. This phenomenon is associated with the memorizing effect of the network structure of protein of the gel.

Comparative study of thermal gelation properties and molecular forces of actomyosin extracted from normal and pale, soft and exudative-like chicken breast meat

  • Li, Ke;Liu, Jun-Ya;Fu, Lei;Zhao, Ying-Ying;Bai, Yan-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.721-733
    • /
    • 2019
  • Objective: The objectives of this study were to investigate the thermal gelation properties and molecular forces of actomyosin extracted from two classes of chicken breast meat qualities (normal and pale, soft and exudative [PSE]-like) during heating process to further improve the understanding of the variations of functional properties between normal and PSE-like chicken breast meat. Methods: Actomyosin was extracted from normal and PSE-like chicken breast meat and the gel strength, water-holding capacity (WHC), protein loss, particle size and distribution, dynamic rheology and protein thermal stability were determined, then turbidity, active sulfhydryl group contents, hydrophobicity and molecular forces during thermal-induced gelling formation were comparatively studied. Results: Sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed that protein profiles of actomyosin extracted from normal and PSE-like meat were not significantly different (p>0.05). Compared with normal actomyosin, PSE-like actomyosin had lower gel strength, WHC, particle size, less protein content involved in thermal gelation forming (p<0.05), and reduced onset temperature ($T_o$), thermal transition temperature ($T_d$), storage modulus (G') and loss modulus (G"). The turbidity, reactive sulfhydryl group of PSE-like actomyosin were higher when heated from $40^{\circ}C$ to $60^{\circ}C$. Further heating to $80^{\circ}C$ had lower transition from reactive sulfhydryl group into a disulfide bond and surface hydrophobicity. Molecular forces showed that hydrophobic interaction was the main force for heat-induced gel formation while both ionic and hydrogen bonds were different significantly between normal and PSE-like actomyosin (p<0.05). Conclusion: These changes in chemical groups and inter-molecular bonds affected protein-protein interaction and protein-water interaction and contributed to the inferior thermal gelation properties of PSE-like meat.

Development and evaluation of probiotic delivery systems using the rennet-induced gelation of milk proteins

  • Ha, Ho-Kyung;Hong, Ji-Young;Ayu, Istifiani Lola;Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1182-1193
    • /
    • 2021
  • The aims of this study were to develop a milk protein-based probiotic delivery system using a modified rennet-induced gelation method and to determine how the skim milk powder concentration level and pH, which can affect the rennet-induced intra- and inter-molecular association of milk proteins, affect the physicochemical properties of the probiotic delivery systems, such as the particle size, size distribution, encapsulation efficiency, and viability of probiotics in simulated gastrointestinal tract. To prepare a milk protein-based delivery system, skim milk powder was used as a source of milk proteins with various concentration levels from 3 to 10% (w/w) and rennet was added to skim milk solutions followed by adjustment of pH from 5.4 or 6.2. Lactobacillus rhamnosus GG was used as a probiotic culture. In confocal laser scanning microscopic images, globular particles with a size ranging from 10 ㎛ to 20 ㎛ were observed, indicating that milk protein-based probiotic delivery systems were successfully created. When the skim milk powder concentration was increased from 3 to 10% (w/w), the size of the delivery system was significantly (p < 0.05) increased from 27.5 to 44.4 ㎛, while a significant (p < 0.05) increase in size from 26.3 to 34.5 ㎛ was observed as the pH was increased from 5.4 to 6.4. An increase in skim milk powder concentration level and a decrease in pH led to a significant (p < 0.05) increase in the encapsulation efficiency of probiotics. The viability of probiotics in a simulated stomach condition was increased when probiotics were encapsulated in milk protein-based delivery systems. An increase in the skim milk powder concentration and a decrease in pH resulted in an increase in the viability of probiotics in simulated stomach conditions. It was concluded that the protein content by modulating skim milk powder concentration level and pH were the key manufacturing variables affecting the physicochemical properties of milk protein-based probiotic delivery systems.

Water-insoluble, Whey Protein-based Microcapsules for Controlled Core Release Application

  • Lee, Sung-Je
    • Journal of Dairy Science and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.115-123
    • /
    • 2005
  • Microcapsules consisting of natural, biodegradable polymers for controlled and/or sustained core release applications are needed. Physicochemical properties of whey proteins suggest that they may be suitable wall materials in developing such microcapsules. The objectives of the research were to develop water-insoluble, whey protein-based microcapsules containing a model water-soluble drug using a chemical cross-linking agent, glutaraldehyde, and to investigate core release from these capsules at simulated physiological conditions. A model water soluble drug, theophylline, was suspended in whey protein isolate (WPI) solution. The suspension was dispersed in a mixture of dichloromethane and hexane containing 1% biomedical polyurethane. Protein matrices were cross-linked with 7.5-30 ml of glutaraldehyde-saturated toluene (GAST) for 1-3 hr. Microcapsules were harvested, washed, dried and analyzed for core retention, microstructure, and core release in enzyme-free simulated gastric fluid (SGF) and simulated intestinal fluid(SIF) at $37^{\circ}C$. A method consisting of double emulsification and heat gelation was also developed to prepare water-insoluble, whey protein-based microcapsules containing anhydrous milkfat (AMF) as a model apolar core. AMF was emulsified into WPI solution (15${\sim}$30%, pH 4.5-7.2) at a proportion of 25${\sim}$50%(w/w, on dry basis). The oil-in-water emulsion was then added and dispersed into corn oil ($50^{\circ}C$) to form an O/W/O double emulsion and then heated at $85^{\circ}C$ for 20 min for gelation of whey protein wall matrix. Effects of emulsion composition and pH on core retention, microstructure, and water-solubility of microcapsules were determined. Overall results suggest that whey proteins can be used in developing microcapsules for controlled and sustained core release applications.

  • PDF