• Title/Summary/Keyword: protein gel

Search Result 1,863, Processing Time 0.031 seconds

Characterization of an Isolate of Cucumber mosaic virus from Raphanus sativus L. (열무에서 분리한 오이모자이크바이러스 분리주의 특성)

  • Rhee, Sun-Ju;Hong, Jin-Sung;Choi, Jang-Kyung;Kim, Eun-Ji;Lee, Gung-Pyo
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.211-215
    • /
    • 2011
  • Cucumber mosaic virus (CMV)-like isolate was collected from Raphanus sativus (cv. Choon-hyang), which showed mosaic symptoms. The isolate was confirmed to a strain of CMV by host responses in Vigna unguiculata, Chenopodium amaranticolor and Gomphrena globosa, by viral genome composition with RT-PCR and PCR-RFLP, and by serological analysis. Symptom developed by the strain of CMV was severe in Nicotiana benthamiana, N. glutinosa, N. tabacum (cv. Samsun, cv. Xanthi), Cucumis melo (cv. Early hanover), Cucumis sativus (cv. White wonder), Capsicum annuum (cv. Chung-yang and cv. Geum-top), but mild symptom was developed in Raphanus sativus (cv. Choon-hyang), Brassica rapa ssp. pekinensis (cv. Bul-Am No. 3), and B. juncea (cv. Daenong Jukgot). Newly isolated strain of CMV could infect diverse crops including Solanaceae, Cucurbitaceae and Brassicaceae. We designated the new strain of CMV as Gn-CMV based on the novel infectivity of Brassicaceae. In double-stranded (ds) RNA analysis, Gn-CMV consisted of 3.3, 3.0, and 2.2 kb genomes likewise other strains of CMV. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed 28 kDa of the CMV coat protein. By restriction enzyme mapping using Cac8I, ClaI and MspI of RT-PCR products indicated that Gn-CMV belongs to CMV subgroup I.

Proteome Analysis of Chicken Embryonic Gonads: Identification of Major Proteins from Cultured Gonadal Primordial Germ Cells

  • Lee, Sang-In;Han, Beom-Ku;Park, Sang-Hyun;Kim, Tae-Min;Sin, Sang-Soo;Lee, Young-Mok;Kim, Hee-Bal;Lim, Jeong-Mook;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.66-67
    • /
    • 2005
  • The domestic chicken (Gallus gallus) is an important model for research in developmental biology because its embryonic development occurs in ovo. To examine the mechanism of embryonic germ cell development, we constructed proteome map of gonadal primordial germ cells (gPGC) from chicken embryonic gonads. Embryonic gonads were collected from 500 embryos at 6 day of incubation, and the gPGC were cultured in vitro until colony formed. After 7-10 days in cultured gPGC colonies were separated from gonadal stroma cells (GSCs). Soluble extracts of cultured gPGCs were then fractionated by two-dimensional gel electrophoresis (pH 4-7). A number of protein spots, including those that displayed significant expression levels, were then identified by use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and LC-MS/MS. Of the 89 gPGC spots examined, 50 yielded mass spectra that matched avian proteins found in on-line databases. Proteome map of thistype will serve as an important reference for germ cell biology and transgenic research.

  • PDF

ACE Inhibitory Materials from Raja kenojei (홍어의 항고혈압 활성물질)

  • 임현수
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.668-674
    • /
    • 2003
  • This study was carried out to investigate the ACE inhibitory materials of Raja kenojei. Raja kenojei was sperated to fillet and viscera, and these were extracted with hot water. Antihypertensive activity was examined by mesearing angiotensin converting enzyme ACE inhibitory activity. ACE inhibitory activity of viscera at the concentration of 2% for Day 0 showed the highest value by 71.0%. But ACE inhibitory activity of fillet at 2% showed by 29%, which was lower antihypertensive activity than viscera. The protein content of viscerial hot water extracts in proximate composition showed the highest. And also, there was a large amount of aromatic and branched aliphatic amino acids in viscera than those in fillet. For the purification of antihypertensive material in visceral hot water extracts, it was separated and collected by Sephadex G-25 gel chromatography. The fraction (B) of 111 to 160 showed the highest ACE inhibitory activity by 65.1% at the concentration of 0.05%. But the other fractions (A and C) showed lower activity than B. These results demonstrate that crude hot water extracts of viscera from Raj kenojei may be useful as functional food ingredient with antihypertensive property.

Common Docking Domain Mutation E322K of the ERK2 Gene is Infrequent in Oral Squamous Cell Carcinomas

  • Valiathan, Gopalakrishnan Mohan;Thenumgal, Siji Jacob;Jayaraman, Bhaskar;Palaniyandi, Arunmozhi;Ramkumar, Hemalatha;Jayakumar, Keerthivasan;Bhaskaran, Sajeev;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6155-6157
    • /
    • 2012
  • Background: Mutations in the MAPK (Mitogen Activated Protein Kinase) signaling pathway - EGFR/Ras/RAF/MEK have been associated with the development of several carcinomas. ERK2, a downstream target of the MAPK pathway and a founding member of the MAPK family is activated by cellular signals emanating at the cell membrane. Activated ERK2 translocates into the nucleus to transactivate genes that promote cell proliferation. MKP - a dual specific phosphatase - interacts with activated ERK2 via the common docking (CD) domain of the later to inactivate (dephosphorylate) and effectively terminate further cell proliferation. A constitutively active form of ERK2 carrying a single point mutation - E322K in its CD domain, was earlier reported by our laboratory. In the present study, we investigated the prevalence of this CD domain E322K mutation in 88 well differentiated OSCC tissue samples. Materials and Method: Genomic DNA specimens isolated from 88 oral squamous cell carcinoma tissue samples were amplified with primers flanking the CD domain of the ERK2 gene. Subsequently, PCR amplicons were gel purified and subjected to direct sequencing to screen for mutations. Results: Direct sequencing of eighty eight OSCC samples identified an E322K CD domain mutation in only one (1.1%) OSCC sample. Conclusions: Our result indicates that mutation in the CD domain of ERK2 is rare in OSCC patients, which suggests the role of genetic alterations in other mitogenic genes in the development of carcinoma in the rest of the patients. Nevertheless, the finding is clinically significant, as the relatively rare prevalence of the E322K mutation in OSCC suggests that ERK2, being a common end point signal in the multi-hierarchical mitogen activated signaling pathway may be explored as a viable drug target in the treatment of OSCC.

Clinical and molecular biological aspect of the hyaluronidases: basis and clinical overview for oriental medical application

  • Kim, Cheorl-Ho;Lee, Dong-Gyu;Jang, Jun-Hyouk;Kim, Jong-De;Nam, Kyung-Soo;Kim, Jeong-Joong;Park, Jong-Kun;Choo, Young-Kug;Kim, Hyung-Min;Lee, Young-Choon
    • Advances in Traditional Medicine
    • /
    • v.1 no.1
    • /
    • pp.8-27
    • /
    • 2000
  • Components of extracellular matrix and the matrix-degrading enzymes are some of the key regulators of tumor metastasis and angiogenesis. Hyaluronic acid (HA), a matrix glycosaminoglycan, is known to promote tumor adhesion and migration, and its small fragments are angiogenic. Until now, we have compared levels of hyaluronidase, an enzyme that degrade HA, in normal adult prostate, benign prostate hyperplasia and prostate cancer tissues and in conditioned media from epithelial explant cultures, using a substrate (HA)-gel assay and ELISA-like assay (Kim et al., unpublished results). The present review described an overall characterization of hyaluronidases and its application to human diseases. The hyaluronidases are a family of enzymes that have, until recently, deed thorough explication. The substrate for these enzymes, hyaluronan, is becoming increasingly important, recognized now as a major participant in basic processes such as cell motility, wound healing, embryogenesis, and implicated in cancer progression. And in those lower life forms that torment human beings, hyaluronidase is associated with mechanisms of entry and spread, e.g. as a virulence factor for bacteria, for tissue dissection in gas gangrene, as a means of treponema spread in syphilis, and for penetration of skin and gut by nematode parasites. Hyaluronidase also comprises a component of the venom of a wide variety of organisms, including bees, wasps, hornets, spiders, scorpions, sh, snakes and lizards. Of particular interest is the homology between some of these venom hyaluronidases and the enzyme found in the plasma membrane of mammalian spermatozoa, attesting to the ancient nature of the conserved sequence, a 36% identity in a 300 amino acid stretch of the enzyme protein. Clearly, hyaluronidase is of biological interest, being involved in the pathophysiology of so many important' human disorders. Greater effort should be made in studying this family of enzymes that have, until recently, been overlooked. Also, oriental medical application of the hyaluronidase will be discussed with respect to inhibition and suppression of inflammation and malignacy.

  • PDF

Cloning and Characterization of an Endoglucanase Gene from Actinomyces sp. Korean Native Goat 40

  • Kim, Sung Chan;Kang, Seung Ha;Choi, Eun Young;Hong, Yeon Hee;Bok, Jin Duck;Kim, Jae Yeong;Lee, Sang Suk;Choi, Yun Jaie;Choi, In Soon;Cho, Kwang Keun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.126-133
    • /
    • 2016
  • A gene from Actinomyces sp. Korean native goat (KNG) 40 that encodes an endo-${\beta}$-1,4-glucanase, EG1, was cloned and expressed in Escherichia coli (E. coli) $DH5{\alpha}$. Recombinant plasmid DNA from a positive clone with a 3.2 kb insert hydrolyzing carboxyl methyl-cellulose (CMC) was designated as pDS3. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The ORF encodes a polypeptide of 684 amino acids. The recombinant EG1 produced in E. coli $DH5{\alpha}$ harboring pDS3 was purified in one step using affinity chromatography on crystalline cellulose and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/zymogram analysis of the purified enzyme revealed two protein bands of 57.1 and 54.1 kDa. The amino terminal sequences of these two bands matched those of the deduced ones, starting from residue 166 and 208, respectively. Putative signal sequences, a Shine.Dalgarno-type ribosomal binding site, and promoter sequences related to the consensus sequences were deduced. EG1 has a typical tripartite structure of cellulase, a catalytic domain, a serine-rich linker region, and a cellulose-binding domain. The optimal temperature for the activity of the purified enzyme was $55^{\circ}C$, but it retained over 90% of maximum activity in a broad temperature range ($40^{\circ}C$ to $60^{\circ}C$). The optimal pH for the enzyme activity was 6.0. Kinetic parameters, $K_m$ and $V_{max}$ of rEG1 were 0.39% CMC and 143 U/mg, respectively.

Effects of Dietary Lipid Source and Level on Growth Performance, Blood Parameters and Flesh Quality of Sub-adult Olive Flounder (Paralichthys olivaceus)

  • Kim, Dong-Kyu;Kim, Kyoung-Duck;Seo, Joo-Young;Lee, Sang-Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.869-879
    • /
    • 2012
  • This study was conducted to investigate the effects of dietary lipid source and level on growth performance, blood parameters, fatty acid composition and flesh quality of sub-adult olive flounder Paralichthys olivaceus. Eight experimental diets were formulated to contain 5% squid liver oil (SLO), 5% linseed oil (LO), 5% soybean oil (SO), a mixture of 1% squid liver oil, 2% linseed oil and 2% soybean oil (MIX), no lipid supplementation with high protein level (LL-HP), 10% squid liver oil (HL-SLO), a mixture of 1% squid liver oil, 4.5% linseed oil and 4.5% soybean oil (HL-VO), and 1% squid liver oil with high starch level (LL-HC), respectively. Two replicate groups of fish (average initial weight of 296 g) were fed the diets for 17 wks. After 5 wks, 11 wks and the end of the feeding trial, five fish from each tank were randomly sampled for analysis of body composition. At the end of the feeding trial, final mean weight of fish fed the LL-HP diet was significantly (p<0.05) higher than that of fish fed the HL-VO diet, but did not differ significantly from those of fish fed the SLO, LO, SO, MIX, HL-SLO and LL-HC diets. Fish fed the LL-HP diet showed significantly higher feed efficiency than fish fed the LO, HL-SLO and HL-VO diets. Feed efficiency of fish fed the LO, SO and MIX diets were similar to those of fish fed the SLO and HL-SLO diets. Fish fed the HL-SLO diet showed significantly higher total cholesterol content in plasma compared with other diets. Fatty acid composition of tissues was reflected by dietary fatty acid composition. The highest linoleic (LA) and linolenic acid (LNA) contents in the dorsal muscle were observed in fish fed the SO and LO diets, respectively, regardless of feeding period. The highest eicosapentaenoic acid (EPA) content in the dorsal muscle was observed in fish fed the LL-HP and LL-HC diets after 11 and 17 weeks of feeding, respectively. Fish fed the SLO and HL-SLO diets showed higher docosahexaenoic acid (DHA) content than that of other treatments after 11 and 17 weeks of feeding, respectively. Dietary inclusion of vegetable oils reduced n-3 HUFA contents in the dorsal muscle and liver of fish. The n-3 HUFA contents in tissues of fish fed the SLO and HL-SLO diets were higher than those of fish fed other diets, except for the LL-HP and LL-HC diets. Hardness, gel strength, chewiness and cohesiveness values of dorsal muscle in fish were significantly affected by dietary lipid source. The results of this study indicate that fish oil in fish meal based diets for sub-adult olive flounder could be replaced by soybean oil and linseed oil without negative effects on growth and feed utilization.

Purification and Characterization of Degradative Enzyme of Dental Plaque from Streptomyces sp. Y9343 (Streptomyces sp. Y9343이 生産하는 齒面細菌膜 分解酵素의 精製와 特性)

  • Kim, Seong-Joo;Han, Hong-Keun;Yoon, Jeong-Weon
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 1996
  • Streptococcus mutans has been implicated as primary causative agents of dental caries by insoluble glucan (IG) in human and experimental animals. An attempt was made to search for the ${\alpha}$-1,3 glucanase that degrades IG produced by S. mutans. ${\alpha}$-1,3 glucanase was detected in the culture supernatant of microorganisms, which are isolated from soils on agar medium containing IG as a sole carbon source. This Streptomyces sp. hydrolysed IG produced by immobilized S. mutans and was named as Y9373. This enzyme required ${\alpha}$-1,3 glucan (IG) as an inducer. The optimum conditions for enzyme production were studied. The enzyme was purified by 30~70% $(NH_4)_2SO_4$ precipitation, anion exchange chroma tography on DEAE-cellulose and gel filtration on Sepadex G-75. The purified enzyme has a specific activity of 7840.0 U/mg protein giving 32.1-fold purification and final yield of 0.53%. The molecular weight was estimated to be about 22.5 kDa by SDS-PAGE. The optimum pH and temperature for enzyme reaction were 6.5 and 37$^{\circ}C$, respectively and the enzyme was relatively stable at the temperature below 60$^{\circ}C$. The activity of purified enzyme was enhanced by adding $Co^{2+},\;Mn^{2+}\;and\;Mg^{2+}$ into the medium, whereas inhibited by adding $Hg^{2+},\;Zn^{2+}$ and SDS. The $K_m\;and\;V_{max}$ value of ${\alpha}$-1,3 glucanase for IG were estimated to be 2.50 mM and 0.0431 mM/min, respectively. The thin layer chromatographic analysis of hydrolysates from IG with ${\alpha}$-1,3 glucanase showed that glucose was the main product of reaction. This enzyme activity was about 14 times higher than marketing dextranase as preventive agent against artificial dental caries by S. mutans in TH medium including 5% sucrose after 30 minutes.

  • PDF

Fibrinolytic Enzyme Activity of Extract from Camellia japonica L. (동백나무 추출물의 혈전용해 효소활성)

  • Lim, Chae-Young;Lee, Sook-Young;Pyo, Byeong-Sik;Kim, Sun-Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.4
    • /
    • pp.195-201
    • /
    • 2006
  • The fibrinolytic activities of soluble proteins extracted from young leaves of Camellia japonica L. were studied. Fibrinolvity activity of extract from partitions of C. japonica L. showed 1.6-2.0 times higher than plasmin used as positive control. The fibrinolytic enzyme was confirmed directly from young leaves of C. japonica L. by a fibrin Plate and fibrin zymography. The protein was composed of a single polypeptide and its apparent molecular weight was found to be 45 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the fibrinolytic activity were pH 5.5 and $30^{\circ}C$, respectively. Also, the fibrinolytic activity was clearly inhibited by PMSF and TLCK, suggesting that it is a member of the trypsin-like serine protease. All these results suggest the protease is a fibrinolytic enzyme belong to a family of trypsin-like serine protease.

Comparison of Enzymatic Activity and Cleavage Characteristics of Trypsin Immobilized by Covalent Conjugation and Affinity Interaction (공유결합과 친화력결합에 의한 고정화 Trypsin의 효소역가와 절단특성 비교)

  • Jang, Dae-Ho;Seong, Gi-Hun;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.279-285
    • /
    • 2006
  • We investigated the effects of immobilization chemistry on the yield of immobilization and the bioactivity of the immobilized enzymes. Trypsin as a model protein and macroporous polymer beads(Toyopearl AF 650M, Tosho Co., Japan) was used as a model matrix. Four methods were used to immobilize trypsin; covalent conjugation by reductive amination(at pH 10.0 and pH 4.0) and affinity interaction via streptavidin-biotin, and double-affinity interaction via biotin-streptavidin-biotin system. The covalent conjugation immobilized $3{\sim}4$ mg/ml-gel, ca. 3-fold higher than the affinity method. However, the specific activity of the covalently(pH 10.0) and affinity-immobilized trypsin(via streptavidin-biotin) are ca. 37% and 50%, respectively, of that of the soluble enzyme(on the low-molecular-weight BAPNA substrate). When the molecular size of a substrate increased, the affinity-immobilized trypsin showed higher clavage activity on insulin and BSA. This result seemed to indicate the streptavidin-biotin system allowed more steric flexibility of the immobilized trypsin in its interaction with a substrate molecule. To confirm this, we studied the molecular flexibility of immobilized trypsin using quartz crystal microbalance-dissipation. Self-assembled monolayers were formed on the Q-sensor surface by aminoalkanethiols, and gultaraldehyde was attached to the SAMs. Trypsin was immobilized in two ways: reductive amination(at pH 10.0) and the streptavidin-biotin system. The dissipation shift of the affinity-immobilized trypsin was $0.8{\times}10^{-6}$, whereas that of the covalently attached enzyme was almost zero. This result confirmed that the streptavidin-biotin system allowed higher molecular flexibility. These results suggested that the bioactivity of the immobilized enzyme be strongly dependent on its molecular flexibility.