Browse > Article
http://dx.doi.org/10.5713/ajas.15.0616

Cloning and Characterization of an Endoglucanase Gene from Actinomyces sp. Korean Native Goat 40  

Kim, Sung Chan (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University)
Kang, Seung Ha (CSIRO Animal, Food and Health Science, Queensland Bioscience Precinct)
Choi, Eun Young (Department of Biological Science, Silla University)
Hong, Yeon Hee (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Bok, Jin Duck (Institute of Green-Bio Science and Technology, Seoul National University)
Kim, Jae Yeong (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Lee, Sang Suk (Department of Animal Science and Technology, Sunchon National University)
Choi, Yun Jaie (Institute of Green-Bio Science and Technology, Seoul National University)
Choi, In Soon (Department of Biological Science, Silla University)
Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.1, 2016 , pp. 126-133 More about this Journal
Abstract
A gene from Actinomyces sp. Korean native goat (KNG) 40 that encodes an endo-${\beta}$-1,4-glucanase, EG1, was cloned and expressed in Escherichia coli (E. coli) $DH5{\alpha}$. Recombinant plasmid DNA from a positive clone with a 3.2 kb insert hydrolyzing carboxyl methyl-cellulose (CMC) was designated as pDS3. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The ORF encodes a polypeptide of 684 amino acids. The recombinant EG1 produced in E. coli $DH5{\alpha}$ harboring pDS3 was purified in one step using affinity chromatography on crystalline cellulose and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/zymogram analysis of the purified enzyme revealed two protein bands of 57.1 and 54.1 kDa. The amino terminal sequences of these two bands matched those of the deduced ones, starting from residue 166 and 208, respectively. Putative signal sequences, a Shine.Dalgarno-type ribosomal binding site, and promoter sequences related to the consensus sequences were deduced. EG1 has a typical tripartite structure of cellulase, a catalytic domain, a serine-rich linker region, and a cellulose-binding domain. The optimal temperature for the activity of the purified enzyme was $55^{\circ}C$, but it retained over 90% of maximum activity in a broad temperature range ($40^{\circ}C$ to $60^{\circ}C$). The optimal pH for the enzyme activity was 6.0. Kinetic parameters, $K_m$ and $V_{max}$ of rEG1 were 0.39% CMC and 143 U/mg, respectively.
Keywords
Korean Native Goat; Actinomyces sp.; Endo-${\beta}$-1,4-glucanase; Cellulase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Forsberg, C. W., J. Gong, L. M. J. Malburg, H. Zhu, A. Iyo, K. J. Cheng, P. J. Krell, and J. P. Phillips. 1993. Preceedings of MIE Bioforum 93: Genetics, Biochemistry and Ecology of Lignocellulose Degradation. Toba, Japan. 125-136.
2 Gao, D., Y. Luan, Q. Wang, Q. Liang, and Q. Qi. 2015. Construction of cellulase-utilizing Escherichia coli based on a secretable cellulase. Microb. Cell Fact. 14:159-167.   DOI
3 Gilkes, N. R., B. Henrissat, D. G. Kildrun, R. C. Miller, and R. A. J. Warren. 1991. Domains in microbial $\beta$-1, 4-glycanases: Sequence conservation, function, and enzyme families. Microbiol. Mol. Biol. Rev. 55:303-315.
4 Gong, X., R. J. Gruninger, M. Qi, L. Paterson, R. J. Forster, R. M. Teather, and T. A. McAllister. 2012. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res. Notes. 5:566-576.   DOI
5 Kuhad, R. C., R. Gupta, and A. Singh 2011. Microbial cellulases and their industrial applications. Enzyme Res. Article ID 280696.
6 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.   DOI
7 Lee, D. S. and M. Y. Pack. 1988. Use of Bacilli for overproduction of exocellular endo-beta-1,4-glucanase encoded by cloned gene. Enzyme Microb. Technol. 9:594-597.
8 Lemaire, M. and P. Beguin. 1993. Nucleotide sequence of the celG gene of Clostridium thermocellum and characterization of its product, endoglucanase CelG. J. Bacteriol. 175:3353-3360.   DOI
9 Mackay, R. M., A. Lo, G. Willick, M. Zuker, S. Baird, M. Dove, F. Moranelli, and V. Seligy. 1986. Structure of a Bacillus subtilis endo-beta-1, 4-glucanase gene. Nucl. Acids Res. 14:9159-9170.   DOI
10 Malburg, L. M. Jr. and C. W. Forsberg. 1993. Fibrobacter succinogenes prossesses at least nine distinct glucanase genes. Can. J. Microbiol. 39:882-891.   DOI
11 Min, H. K., Y. J. Choi, J. K. Ha, K. K. Cho, Y. M. Kwon, Y. H. Chang, and S. S. Lee. 1994a. Isolation and identification of anaerobic rumen bacterium, Actinomyces sp. 40 and enzymatic properties of ${\beta}$-1,4-glucanase. Asian Australas. J. Anim. Sci. 7:373-382.   DOI
12 Min, H. K., Y. J. Choi, K. K. Cho, J. K. Ha, and J. H. Woo. 1994b. Cloning of the endoglucanase gene from Actinomyces sp. 40 in Escherichia coli and some properties of the gene products. J. Microbiol. Biotechnol. 4:102-107.
13 Mittendorf, V. and J. A. Thomson. 1993. Cloning of an endo- (1o>4)-betaglucanase gene, celA, from the rumen bacterium Clostridium sp. ('C.longisporum') and characterization of its product. CelA, in Escherichia coli. J. Gen. Microbiol. 139:3233-3242.   DOI
14 Miyatake, M. and K. Imada. 1997. A gene encoding endo-1,4-beta-glucanase from Bacillus sp. 22-28. Biosci. Biotechnol. Biochem. 61:362-364.   DOI
15 Nguyen, N. H., L. Maruset, T. Uengwetwanit, W. Mhuantong, P. Harnpicharnchai, V. Champreda, S. Tanapongpipat, K. Jirajaroenrat, S. K. Rakshit, L. Eurwilaichitr, and S. Pongpattanakitshote. 2012. Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library. Biosci. Biotechnol. Biochem. 76:1075-1084.   DOI
16 Ohara, H., J. Noguchi, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2000. Sequence of egV and properties of EgV, a Ruminococcus albus endoglucanase containing a dockerin domain. Biosci. Biotechnol. Biochem. 64:80-88.   DOI
17 Rashamuse, K. J., D. F. Visser, F. Hennessy, J. Kemp, M. P. Rouxvan der Merwe, J. Badenhorst, T. Ronneburg, R. Francis-Pope, and D. Brady. 2013. Characterisation of two bifunctional cellulase-xylanase enzymes isolated from a bovine rumen metagenome library. Curr. Microbiol. 66:145-151.   DOI
18 Park, K. M., H. T. Shin, and K. H. Kang. 1993. Isolation and identification of rumen bacteria from Korean native goat. I. Isolation and identification of Gram positive bacteria. Kor. J. Dairy Sci. 15:165-177.
19 Perlman, D. and H. O. Halvorson. 1983. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Biol. 167:391-409.   DOI
20 Poole, D. M., G. P. Hazlewood, J. I. Laurie, P. J. Barker, and H. J. Gilbert. 1990. Nucleotide sequence of the Ruminococcus albus SY3 endoglucanase genes celA and celB. Mol. Gen. Genet. 223:217-223.
21 Sahu, N. P., D. N. Kamra, and S. S. Paul. 2004. Effect of cellulose degrading bacteria isolated from wild and domestic ruminants on in vitro dry matter digestibility of feed and enzyme production. Asian Australas. J. Anim. Sci. 17:199-202.   DOI
22 Saito, H. and K. Miura. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta. Specialized Section on Nucleic Acids and Related Subjects 72:619-629.
23 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual, 2nd Ed. Cold Spring Harbour Laboratory Press. Cold Spring Harbor, NY, USA.
24 Sanger, R., S. Niclien, and A. R. Coulson. 1997. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. 74:5463-5467.
25 Teather, R. M. and P. J. Wood. 1982. Use of Congo red - polysaccharide interactions in enumeration and characterization of celluloytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43:777-780.
26 Seo, J. K., T. S. Park, I. H. Kwon, M. Y. Piao, C. H. Lee, and J. K. Ha. 2013. Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian Australas. J. Anim. Sci. 26:50-58.   DOI
27 Shine, J. and L. Dalgano. 1975. Determinant of cistron specificity in bacterial ribosomes. Naure 254:34-38.
28 Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195:19-23.
29 Von Heijne, G. 1985. Signal sequences: The limits of variation. J. Mol. Biol. 184:99-105.   DOI
30 Yan, S. and G. Wu. 2014. Signal peptide of cellulase. Appl. Microbiol. Biotechnol. 98:5329-5362.   DOI
31 Yuan, S. F., T. H. Wu, H. L. Lee, H. Y. Hsieh, W. L. Lin, B. Yang, C. K. Chang, Q. Li, J. Gao, C. H. Huang, M. C. Ho, R. T. Guo and P. H. Liang. 2015. Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum. J. Biol. Chem. 290:5739-5748.   DOI
32 Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254.   DOI
33 Areej, A., E. M. Altenaiji, and L. F. Yousef. 2014. Fungal cellulases from mangrove forests - A short review. J. Biochem. Tech. 5:765-774.
34 Baird, S. D., D. A. Johnson, and V. L. Seligy. 1990. Molecular cloning, expression, and characterization of endo-beta-1,4-glucanase genes from Bacillus polymyxa and Bacillus circulans. J. Bacteriol. 172:1576-1586.   DOI
35 Bedford, M. R. and G. G. Partridge. 2001. Enzymes in Farm Animal Nutrition. CABI publishing. Wallingford, Xofrodshire, UK. 38 p.
36 Chang, L., M. Ding, L. Bao, Y. Chen, J. Zhou, and H. Lu. 2011. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Appl. Microbiol. Biotechnol. 90:1933-1942.   DOI
37 Clarke. A. J. 1997. Biodegradation of Cellulose: Enzymology and Biotechnology. A Technomic Publishing Company Book, Lancaster, PA, USA. 43 p.
38 Cho, K. K., S. C. Kim, J. J. Woo, J. D. Bok, and Y. J. Choi. 2000. Molecular cloning and expression of a novel family A endoglucanase gene from Fibrobacter succinogenes S85 in Escherichia coli. Enzyme Microb. Technol. 27:475-481.   DOI
39 Coughlan, M. P. 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Rev. 3:39-110.   DOI
40 Culleton, H., V. A. McKie, and R. P. de Vries. 2014. Overexpression, purification and characterisation of homologous $\alpha$-L-arabinofuranosidase and endo-1,4-$\beta$-D-glucanase in Aspergillus vadensis. J. Ind. Microbiol. Biotechnol. 41:1697-1708.   DOI