• Title/Summary/Keyword: protein dynamics

Search Result 237, Processing Time 0.028 seconds

Molecular Dynamics of the C-Terminal Domain Mouse CDT1 Protein

  • Khayrutdinov, Bulat I.;Bae, Won-Jin;Kim, Jeong-Ju;Hwang, Eun-Ha;Yun, Young-Mi;Ryu, Kyoung-Seok;Cheong, Hae-Kap;Kim, Yu-Gene;Cho, Yun-Je;Jeon, Young-Ho;Cheong, Chae-Joon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.1
    • /
    • pp.30-41
    • /
    • 2007
  • The backbone molecular dynamics of the C-terminal part of the mouse Cdt1 protein (tCdt1, residues 420-557) was studied by high field NMR spectroscopy. The Secondary structure of this protein was suggested by analyzing of chemical shift of backbone atoms with programs TALOS and PECAN, together with NOE connectivities from 3D $^{15}N-HSQC-NOESY$ data. Measurement of dynamic parameters $T_1,\;T_2$ and NOE and limited proteolysis experiment provided information for domain organization of tCdt1(420-557). Analysis of the experimental data showed that the C-terminal part of the tCdt1 has well folded domain for residues 455-553. The residues 420-453 including ${\alpha}-helix$ (432-441) are flexible and probably belong to other functional domain in intact full length Cdt1 protein.

  • PDF

Cellular Adhesions and Protein Dynamics on Carbon Nanotube/Polymer composites Surfaces

  • Gang, Min-Ji;Wang, Mun-Pyeong;Im, Yeon-Min;Kim, Jin-Guk;Gang, Dong-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.45.2-45.2
    • /
    • 2010
  • Possessing of carbon nanotubes in biopolymer intrigued much interest due to their mechanical and unique nanoscale surface properties. Surface stiffness can be controlled by the amount of carbon nanotubes in polymer and surface wettability can be altered by the order of nanoscale surface roughness. Protein adsorption mechanism on nanostructured carbon nanotube/polymer thin film will be discussed in this study. In addition, we identified that mechanical stimuli also contribute the messenchymal stem cell and bone cell interactions. Importantly, live cell analysis system also showed altered morphology and cellular functions. Thus, embedding of carbon nanostructures simultaneously contribute to protein adsorption and cellular interactions. In conclusion, this study demonstrated the evidence that nanoscale surface features determine the subsequent biological interactions, such as protein adsorption and cellular interactions.

  • PDF

Augmenter of Liver Regeneration Alleviates Renal Hypoxia-Reoxygenation Injury by Regulating Mitochondrial Dynamics in Renal Tubular Epithelial Cells

  • Long, Rui-ting;Peng, Jun-bo;Huang, Li-li;Jiang, Gui-ping;Liao, Yue-juan;Sun, Hang;Hu, Yu-dong;Liao, Xiao-hui
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.893-905
    • /
    • 2019
  • Mitochondria are highly dynamic organelles that constantly undergo fission and fusion processes that closely related to their function. Disruption of mitochondrial dynamics has been demonstrated in acute kidney injury (AKI), which could eventually result in cell injury and death. Previously, we reported that augmenter of liver regeneration (ALR) alleviates renal tubular epithelial cell injury. Here, we gained further insights into whether the renoprotective roles of ALR are associated with mitochondrial dynamics. Changes in mitochondrial dynamics were examined in experimental models of renal ischemia-reperfusion (IR). In a model of hypoxia-reoxygenation (HR) injury in vitro, dynamin-related protein 1 (Drp1) and mitochondrial fission process protein 1 (MTFP1), two key proteins of mitochondrial fission, were downregulated in the Lv-ALR + HR group. ALR overexpression additionally had an impact on phosphorylation of Drp1 Ser637 during AKI. The inner membrane fusion protein, Optic Atrophy 1 (OPA1), was significantly increased whereas levels of outer membrane fusion proteins Mitofusin-1 and -2 (Mfn1, Mfn2) were not affected in the Lv-ALR + HR group, compared with the control group. Furthermore, the mTOR/4E-BP1 signaling pathway was highly activated in the Lv-ALR + HR group. ALR overexpression led to suppression of HR-induced apoptosis. Our collective findings indicate that ALR gene transfection alleviates mitochondrial injury, possibly through inhibiting fission and promoting fusion of the mitochondrial inner membrane, both of which contribute to reduction of HK-2 cell apoptosis. Additionally, fission processes are potentially mediated by promoting tubular cell survival through activating the mTOR/4E-BP1 signaling pathway.

The Role of Abp140p in Actin Dynamics of Budding Yeast

  • Lim, Bum-Soon;Lee, Yong-Keun;Pon, Liza A.;Yang, Hyeong-Cheol
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.17-22
    • /
    • 2005
  • In the previous studies of Saccharomyces cerevisiae, Abp140p (actin binding protein 140) fused to GFP has been only a protein that can label actin cables of yeast cells so far. However, the role of Abp140p in actin dynamics was remained elusive. In this study, the function of Abp140p was investigated with a deletion mutant and overexpression of GFP fused Abp140p. The deletion mutant was slightly more susceptible to Latrunculin-A (Lat-A), an actin-monomer sequestering agent, than wild type, although no significant deformation of actin structures was caused by ABP 140 deletion. Overexpression of Abp140p-GFP retarded cell growth, and produced thick and robust actin cables. Lat-A was not able to destabilize the thick actin cables, which suggests that actin dynamics was compromised in the cells with surplus of Abp140p. Therefore, Abp140p seems to stabilize actin cables together with other bundling proteins. Recently, actin cable dynamics of budding yeast was found to have a resemblance to that of filopodial tip of cultured mammalian cells. Retrograde movement of actin cables from buds to mother cells indicated local generation of the cable at bud sites. By using Abp140p-GFP, we traced the steps in the generation of a new actin cable after elimination of old cables by sodium azide. Before the appearance of a new actin cable, Abp140p-GFP concentrated in buds and disappeared, as mother cells became abundant in actin cables. Our observations provide a direct evidence of actin cable formation at buds of budding cells.

Force Field Parameters for 3-Nitrotyrosine and 6-Nitrotryptophan

  • Myung, Yoo-Chan;Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2581-2587
    • /
    • 2010
  • Nitration of tyrosine and tryptophan residues is common in cells under nitrative stress. However, physiological consequences of protein nitration are not well characterized on a molecular level due to limited availability of the 3D structures of nitrated proteins. Molecular dynamics (MD) simulation can be an alternative tool to probe the structural perturbations induced by nitration. In this study we developed molecular mechanics parameters for 3-nitrotyrosine (NIY) and 6-nitrotryptophan (NIW) that are compatible with the AMBER-99 force field. Partial atomic charges were derived by using a multi-conformational restrained electrostatic potential (RESP) methodology that included the geometry optimized structures of both $\alpha$- and $\beta$-conformers of a capped tripeptide ACE-NIY-NME or ACE-NIW-NME. Force constants for bonds and angles were adopted from the generalized AMBER force field. Torsional force constants for the proper dihedral C-C-N-O and improper dihedral C-O-N-O of the nitro group in NIY were determined by fitting the torsional energy profiles obtained from quantum mechanical (QM) geometry optimization with those from molecular mechanical (MM) energy minimization. Force field parameters obtained for NIY were transferable to NIW so that they reproduced the QM torsional energy profiles of ACE-NIW-NME accurately. Moreover, the QM optimized structures of the tripeptides containing NIY and NIW were almost identical to the corresponding structures obtained from MM energy minimization, attesting the validity of the current parameter set. Molecular dynamics simulations of thioredoxin nitrated at the single tyrosine and tryptophan yielded well-behaved trajectories suggesting that the parameters are suitable for molecular dynamics simulations of a nitrated protein.

Perspective on the Role of Mitochondrial Dynamics in the Nervous System Development (미토콘드리아의 구조적 역동성의 신경계 발생 과정 기능 고찰)

  • Cho, Bong-Ki;Sun, Woong
    • Development and Reproduction
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2009
  • Recent advances in cell biological and genetic researches have revealed that mitochondrial morphology is highly dynamic and regulated by multiple molecular factors including dynamin-related proteins (DRPs). Considering that the mitochondria play critical roles in the cellular metabolism via ATP synthesis, calcium homeostasis in cooperation with endoplasmic reticulum, and apoptosis, the failure of mitochondrial dynamics is infrequently related to the failure in the normal growth and cellular integrity. In this respect, alteration of mitochondrial dynamics may greatly affect the development of nervous system. In this short review, we discussed molecules involved in the control of mitochondrial dynamics, and provide some perspectives on their significance in the neuronal development.

  • PDF

M Protein from Dengue virus oligomerizes to pentameric channel protein: in silico analysis study

  • Ayesha Zeba;Kanagaraj Sekar;Anjali Ganjiwale
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.41.1-41.11
    • /
    • 2023
  • The Dengue virus M protein is a 75 amino acid polypeptide with two helical transmembranes (TM). The TM domain oligomerizes to form an ion channel, facilitating viral release from the host cells. The M protein has a critical role in the virus entry and life cycle, making it a potent drug target. The oligomerization of the monomeric protein was studied using ab initio modeling and molecular dynamics simulation in an implicit membrane environment. The representative structures obtained showed pentamer as the most stable oligomeric state, resembling an ion channel. Glutamic acid, threonine, serine, tryptophan, alanine, isoleucine form the pore-lining residues of the pentameric channel, conferring an overall negative charge to the channel with approximate length of 51.9 Å. Residue interaction analysis for M protein shows that Ala94, Leu95, Ser112, Glu124, and Phe155 are the central hub residues representing the physicochemical interactions between domains. The virtual screening with 165 different ion channel inhibitors from the ion channel library shows monovalent ion channel blockers, namely lumacaftor, glipizide, gliquidone, glisoxepide, and azelnidipine to be the inhibitors with high docking scores. Understanding the three-dimensional structure of M protein will help design therapeutics and vaccines for Dengue infection.

Molecular dynamics simulations approaches for discovering anti-influenza drug

  • Cho, Sungjoon;Choi, Youngjin
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.24.1-24.4
    • /
    • 2016
  • The emergence of influenza virus and antigenic drift are potential cause of world-wide pandemic. There are some commercially available drugs in the market to treat influenza. During past decade, however, critical resistances have been raised for biological targets. Because of structural complexity and flexibility of target proteins, applying a computational modeling tool is very beneficial for developing alternative anti-influenza drugs. In this review, we introduced molecular dynamics (MD) simulations approach to reflect full conformational flexibility of proteins during molecular modeling works. Case studies of MD works were summarized for the drug discovery and drug resistance mechanism of anti-influenza pharmaceuticals.

Structural Dynamics of Myoglobin Probed by Femtosecond Infrared Spectroscopy of the Amide Band

  • Kim, Seong-Heun;Jin, Geun-Young;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1470-1474
    • /
    • 2003
  • The dynamics of the tertiary conformation of myoglobin (Mb) after photolysis of carbon monoxide was investigated at 283 K solution by probing amide I and II bands using femtosecond IR absorption spectroscopy. Time-resolved spectra in the amide region evolve with 6-12 ps time scale without noticeable subpicosecond dynamics. The spectra measured at 100 ps delay after photolysis is similar to the difference FTIR spectrum at equilibrium. Time-resolved spectra of photoexcited Mb evolve modestly and their amplitudes are less than 8% of those of photolyzed MbCO, indicating that thermal contribution to the spectral evolution in the amide region is negligible. These observations suggest that the conformational relaxation ensuing photolysis of MbCO be complex and the final deoxy protein conformation have been substantially formed by 100 ps, probably with 6- 12 ps time constant.

Facile analysis of protein-protein interactions in living cells by enriched visualization of the p-body

  • Choi, Miri;Baek, Jiyeon;Han, Sang-Bae;Cho, Sungchan
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.526-531
    • /
    • 2018
  • Protein-Protein Interactions (PPIs) play essential roles in diverse biological processes and their misregulations are associated with a wide range of diseases. Especially, the growing attention to PPIs as a new class of therapeutic target is increasing the need for an efficient method of cell-based PPI analysis. Thus, we newly developed a robust PPI assay (SeePPI) based on the co-translocation of interacting proteins to the discrete subcellular compartment 'processing body' (p-body) inside living cells, enabling a facile analysis of PPI by the enriched fluorescent signal. The feasibility and strength of SeePPI (${\underline{S}}ignal$ ${\underline{e}}nhancement$ ${\underline{e}}xclusively$ on ${\underline{P}}-body$ for ${\underline{P}}rotein-protein$ ${\underline{I}}nteraction$) assay was firmly demonstrated with FKBP12/FRB interaction induced by rapamycin within seconds in real-time analysis of living cells, indicating its recapitulation of physiological PPI dynamics. In addition, we applied p53/MDM2 interaction and its dissociation by Nutlin-3 to SeePPI assay and further confirmed that SeePPI was quantitative and well reflected the endogenous PPI. Our SeePPI assay will provide another useful tool to achieve an efficient analysis of PPIs and their modulators in cells.