• Title/Summary/Keyword: protein drug

Search Result 1,354, Processing Time 0.034 seconds

Pathophysiological Roles of ASK1-MAP Kinase Signaling Pathways

  • Nagai, Hiroaki;Noguchi, Takuya;Takeda, Kohsuke;Ichijo, Hidenori
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Apoptosis signal-regulating kinase 1 (ASK1) is a mitogenactivated protein kinase (MAPK) kinase kinase that activates JNK and p38 kinases. ASK1 is activated by various stresses, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, lipopolysaccharide (LPS) and calcium influx which are thought to be responsible for the pathogenesis or exacerbations of various human diseases. Recent studies revealed the involvement of ASK1 in ROS- or ER stressrelated diseases, suggesting that ASK1 may be a potential therapeutic target of various human diseases. In this review, we focus on the current findings for the relationship between pathogenesis and ASK1-MAPK pathways.

Anti-inflammatory and Cytotoxic Activities of Phenolic Compounds from Broussonetia kazinoki

  • Vu, Ngoc Khanh;Le, Thi Thanh;Woo, Mi Hee;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.176-182
    • /
    • 2021
  • The phytochemical investigation of Broussonetia kazinoki roots led to the isolation of ten compounds, including six flavonoids (1-6), two lignans (7 and 8), and two coumarins (9 and 10) by comparing their 1H and 13C NMR spectra with reference values. To the best of our knowledge, compounds 9 and 10 were isolated from this plant for the first time. Among the ten isolates, compounds 2, 4, and 6 exhibited inhibitory effects against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in macrophage RAW264.7 cells with IC50 values of 11.98, 10.16, and 24.06 μM, respectively. Furthermore, compounds 2, 4, and 6 reduced LPS-induced inducible nitric oxide synthase (iNOS) expression in a dose-dependent manner. Pre-incubation of cells with these compounds also significantly suppressed LPS-induced COX-2 protein expression. Compounds 2, 4, and 6 also showed cytotoxic activity against HL-60 cells with IC50 values ranging between 46.43 and 94.06 μM.

Molecular phylogenetic studies on clinical bovine piroplasmosis caused by benign Theileria in Shaanxi Province, China

  • Wang, Jing;Zhang, Jiyu;Zhu, Zhen;Zhou, Xuzheng;Li, Bing
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.846-849
    • /
    • 2018
  • A group of benign Theileria species, which are often referred to as T. orientalis/T. buffeli/T. sergenti group, has low pathogenicity in cattle. Herein, we report on Theileria spp. in cattle on a farm from China. Based on phylogenetic analysis of the major piroplasm surface protein gene sequences, we detected 6 genotypes that were categorized as Types 1, 2, 3, 4, and 5 as well as an additional Type 9 genotype. The new epidemiological features of the T. orientalis/T. buffeli/T. sergenti parasites in China indicate a greater diversity in the genetics of these species than had been previously thought.

Quantification of Fargesin in Mouse Plasma Using Liquid Chromatography-High Resolution Mass Spectrometry: Application to Pharmacokinetics of Fargesin in Mice

  • Lee, Min Seo;Lim, Chang Ho;Bang, Young Yoon;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • v.13 no.1
    • /
    • pp.20-25
    • /
    • 2022
  • Fargesin, a tetrahydrofurofuranoid lignan isolated from Flos Magnoliae, shows anti-inflammatory, anti-oxidative, anti-allergic, and anti-hypertensive activities. To evaluate the pharmacokinetics of fargesin in mice, a sensitive, simple, and selective liquid chromatography-high resolution mass spectrometric method using electrospray ionization and parallel reaction monitoring mode was developed and validated for the quantification of fargesin in mouse plasma. Protein precipitation of 6 µL mouse plasma with methanol was used as sample clean-up procedure. The standard curve was linear over the range of 0.2-500 ng/mL in mouse plasma with the lower limit of quantification level at 0.2 ng/mL. The intra- and inter-day coefficient variations and accuracies for fargesin at four quality control concentrations including were 3.6-11.3% and 90.0-106.6%, respectively. Intravenously injected fargesin disappeared rapidly from the plasma with high clearance values (53.2-55.5 mL/min/kg) at 1, 2, and 4 mg/kg doses. Absolute bioavailability of fargesin was 4.1-9.6% after oral administration of fargesin at doses of 1, 2, and 4 mg/kg to mice.

Crosstalk between BMP signaling and KCNK3 in phenotypic switching of pulmonary vascular smooth muscle cells

  • Yeongju, Yeo;Hayoung, Jeong;Minju, Kim;Yanghee, Choi;Koung Li, Kim;Wonhee, Suh
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.565-570
    • /
    • 2022
  • Pulmonary arterial hypertension (PAH) is a progressive and devastating disease whose pathogenesis is associated with a phenotypic switch of pulmonary arterial vascular smooth muscle cells (PASMCs). Bone morphogenetic protein (BMP) signaling and potassium two pore domain channel subfamily K member 3 (KCNK3) play crucial roles in PAH pathogenesis. However, the relationship between BMP signaling and KCNK3 expression in the PASMC phenotypic switching process has not been studied. In this study, we explored the effect of BMPs on KCNK3 expression and the role of KCNK3 in the BMP-mediated PASMC phenotypic switch. Expression levels of BMP receptor 2 (BMPR2) and KCNK3 were downregulated in PASMCs of rats with PAH compared to those in normal controls, implying a possible association between BMP/BMPR2 signaling and KCNK3 expression in the pulmonary vasculature. Treatment with BMP2, BMP4, and BMP7 significantly increased KCNK3 expression in primary human PASMCs (HPASMCs). BMPR2 knockdown and treatment with Smad1/5 signaling inhibitor substantially abrogated the BMP-induced increase in KCNK3 expression, suggesting that KCNK3 expression in HPASMCs is regulated by the canonical BMP-BMPR2-Smad1/5 signaling pathway. Furthermore, KCNK3 knockdown and treatment with a KCNK3 channel blocker completely blocked BMP-mediated anti-proliferation and expression of contractile marker genes in HPAMSCs, suggesting that the expression and functional activity of KCNK3 are required for BMP-mediated acquisition of the quiescent PASMC phenotype. Overall, our findings show a crosstalk between BMP signaling and KCNK3 in regulating the PASMC phenotype, wherein BMPs upregulate KCNK3 expression and KCNK3 then mediates BMP-induced phenotypic switching of PASMCs. Our results indicate that the dysfunction and/or downregulation of BMPR2 and KCNK3 observed in PAH work together to induce aberrant changes in the PASMC phenotype, providing insights into the complex molecular pathogenesis of PAH.

Gene Expression Profiling of Genotoxicity Induced by MNNG in TK6 Cell

  • Suh, Soo-Kyung;Kim, Tae-Gyun;Kim, Hyun-Ju;Koo, Ye-Mo;Lee, Woo-Sun;Jung, Ki-Kyung;Jeong, Youn-Kyoung;Kang, Jin-Seok;Kim, Joo-Hwan;Lee, Eun-Mi;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.98-106
    • /
    • 2007
  • Genotoxic stress triggers a variety of biological responses including the transcriptional activation of genes regulating DNA repair, cell survival and cell death. In this study, we investigated to examine gene expression profiles and genotoxic response in TK6 cells treated with DNA damaging agents MNNG (N-methyl-N'-nitrosoguanidine) and hydrogen peroxide $(H_2O_2)$. We extracted total RNA in three independent experiments and hybridized cRNA probes with oligo DNA chip (Applied Biosystems Human Genome Survey Microarray). We analyzed raw signal data with R program and AVADIS software and identified a number of deregulated genes with more than 1.5 log-scale fold change and statistical significancy. We indentified 14 genes including G protein alpha 12 showing deregulation by MNNG. The deregulated genes by MNNG represent the biological pathway regarding MAP kinase signaling pathway. Hydrogen peroxide altered 188 genes including sulfiredoxins. These results show that MNNG and $H_2O_2$ have both uniquely regulated genes that provide the potential to serve as biomarkers of exposure to DNA damaging agents.

Endosulfan Induces CYP1A1 Expression Mediated through Aryl Hydrocarbon Receptor Signal Transduction by Protein Kinase C

  • Han, Eun Hee;Kim, Hyung Gyun;Lee, Eun Ji;Jeong, Hye Gwang
    • Toxicological Research
    • /
    • v.31 no.4
    • /
    • pp.339-345
    • /
    • 2015
  • CYP1A1 is a phase I xenobiotic-metabolizing enzyme whose expression is mainly driven by AhR. Endosulfan is an organochlorine pesticide used agriculturally for a wide range of crops. In this study, we investigated the effect of endosulfan on CYP1A1 expression and regulation. Endosulfan significantly increased CYP1A1 enzyme activity as well as mRNA and protein levels. In addition, endosulfan markedly induced XRE transcriptional activity. CH-223191, an AhR antagonist, blocked the endosulfan-induced increase in CYP1A1 mRNA and protein expression. Moreover, endosulfan did not induce CYP1A1 gene expression in AhR-deficient mutant cells. Furthermore, endosulfan enhanced the phosphorylation of calcium calmodulin (CaM)-dependent protein kinase (CaMK) and protein kinase C (PKC). In conclusion, endosulfan-induced up-regulation of CYP1A1 is associated with AhR activation, which may be mediated by PKC-dependent pathways.

Structural and Thermodynamic Characteristics of cHLH Peptide and cHLH/HDM2 Complex

  • Im, Haeri;Cho, Sunhee;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.62-66
    • /
    • 2016
  • Tumor suppressor protein p53 loses its function upon binding with the HDM2 protein, and inhibiting the p53-HDM2 interaction is critical to suppress tumor cell growth. Recently, the cyclized helix-loop-helix peptide (cHLH) mimicking the ${\alpha}-helix$ part of the p53 protein has been designed and found to exhibit high binding affinity with HDM2. Here, we report the structural and thermodynamic characteristics of the bound complex of the cHLH peptide with the HDM2 protein. We performed molecular dynamics simulations to investigate the structural features of the cHLH peptide as well as its complex with the HDM2. The binding free energy calculation based on the integral equation theory was also executed to quantify the binding affinity for the cHLH/HDM2 complex and to understand the factors contributing to the binding affinity. We found a variety of factors for the helix stability of the cHLH peptide as well as in the complexation with the HDM2, which may provide an insight into the development of anti-cancer drug designs.

  • PDF

Complete Relaxation and Conformational Exchange Matrix (CORCEMA) Analysis of Saturation Transfer Difference (STD) NMR Spectra of Ligand-Protein Complexes

  • Krishna, N.Rama;Jayalakshmi, V.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.2
    • /
    • pp.94-102
    • /
    • 2002
  • An interesting recent application of intermolecular NOE experiment is the saturation transfer difference NMR(STD-NMR) method that is useful in screening compound libraries to identify bio-active ligands. This technique also identifies the group epitopes of the bound ligand in a reversibly forming protein-ligand complex. We present here a complete relaxation and conformational exchange matrix (CORCEMA) theory (Moseley et al., J. Magn. Reson. B, 108, 243-261 (1995)) applicable for the STD-NMR experiment. Using some ideal model systems we have analyzed the factors that influence the STD intensity changes in the ligand proton NMR spectrum when the resonances from some protons on the receptor protein are saturated. These factors will be discussed and some examples of its application in some model systems will be presented. This CORCEMA theory for STD-NMR and the associated algorithm are useful in a quantitative interpretation of the STD-NMR effects, and are likely to be useful in structure-based drug design efforts. They are also useful in a quantitative characterization of protein-protein (or protein-nucleic acid) contact surfaces from an intermolecular cross-saturation NMR experiment.

  • PDF