Browse > Article
http://dx.doi.org/10.20307/nps.2021.27.3.176

Anti-inflammatory and Cytotoxic Activities of Phenolic Compounds from Broussonetia kazinoki  

Vu, Ngoc Khanh (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University)
Le, Thi Thanh (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University)
Woo, Mi Hee (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University)
Min, Byung Sun (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University)
Publication Information
Natural Product Sciences / v.27, no.3, 2021 , pp. 176-182 More about this Journal
Abstract
The phytochemical investigation of Broussonetia kazinoki roots led to the isolation of ten compounds, including six flavonoids (1-6), two lignans (7 and 8), and two coumarins (9 and 10) by comparing their 1H and 13C NMR spectra with reference values. To the best of our knowledge, compounds 9 and 10 were isolated from this plant for the first time. Among the ten isolates, compounds 2, 4, and 6 exhibited inhibitory effects against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in macrophage RAW264.7 cells with IC50 values of 11.98, 10.16, and 24.06 μM, respectively. Furthermore, compounds 2, 4, and 6 reduced LPS-induced inducible nitric oxide synthase (iNOS) expression in a dose-dependent manner. Pre-incubation of cells with these compounds also significantly suppressed LPS-induced COX-2 protein expression. Compounds 2, 4, and 6 also showed cytotoxic activity against HL-60 cells with IC50 values ranging between 46.43 and 94.06 μM.
Keywords
Broussonetia kazinoki; Moraceae; flavonoid; lignan; anti-inflammatory activity; cytotoxic activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mosmann, T. J. Immunol. Methods 1983, 65, 55-63.   DOI
2 Tran, H. N. K.; Cao, T. Q.; Kim, J. A.; Woo, M. H.; Min, B. S. Fitoterapia 2019, 137, 104261.   DOI
3 Evans, C. H. Agents Actions Suppl. 1995, 47, 107-116.
4 Tabas, I.; Glass, C. K. Science 2013, 339, 166-172.   DOI
5 Moncada, S.; Palmer, R. M.; Higgs, E. A. Pharmacol. Rev. 1991, 43, 109-142.
6 Maioral, M. F.; do Nascimento Bodack, C.; Stefanes, N. M.; Bigolin, A.; Mascarello, A.; Chiaradia-Delatorre, L. D.; Yunes, R. A.; Nunes, R. J.; Santos-Silva, M. C. Biochimie 2017, 140, 48-57.   DOI
7 Ruffa, M.; Ferraro, G.; Wagner, M. L.; Calcagno, M. L.; Campos, R. H.; Cavallaro, L. J. Ethnopharmacol. 2002, 79, 335-339.   DOI
8 Bracci, L.; Schiavoni, G.; Sistigu, A.; Belardelli, F. Cell Death Differ. 2014, 21, 15-25.   DOI
9 Wang, G. W.; Huang, B. K.; Qin, L. P. Phytother. Res. 2012, 26, 1-10.   DOI
10 Lee, H.; Li, H.; Jeong, J. H.; Noh, M.; Ryu, J. H. Fitoterapia 2016, 112, 90-96.   DOI
11 Jadeja, Y. S.; Kapadiya, K. M.; Jebaliya, H. J.; Shah, A. K.; Khunt, R. C. Magn. Reson. Chem. 2017, 55, 589-594.   DOI
12 Encarnacion, D. R.; Nogueiras, L.; Salinas, V. H. A.; Anthoni, U.; Nielsen, P. H.; Christophersen, C. Acta Chem. Scand. 1999, 53, 375-377.   DOI
13 Lukacin, R.; Wellmann, F.; Britsch, L.; Martens, S.; Matern, U. Phytochemistry 2003, 62, 287-292.   DOI
14 Van Loo, P.; De Bruyn, A.; Budesinsky, M. Magn. Reson. Chem. 1986, 24, 879-882.   DOI
15 Park, Y.; Moon, B. H.; Yang, H.; Lee, Y.; Lee, E.; Lim, Y. Magn. Reson. Chem. 2007, 45, 1072-1075.   DOI
16 Vu, N. K.; Kim, C. S .; Ha, M. T.; Ngo, Q. M. T.; Park, S . E.; Kwon, H.; Lee, D.; Choi, J. S .; Kim, J. A.; Min, B. S . J. Agric. Food Chem. 2020, 68, 8797-8811.   DOI
17 Brenes, M.; Hidalgo, F. J.; Garcia, A.; Rios, J. J.; Garcia, P.; Zamora, R.; Garrido, A. J. Am. Oil Chem. Soc. 2000, 77, 715-720.   DOI
18 Gohari, A. R.; Saeidnia, S.; Bayati-Moghadam, M.; Amin, G. Daru 2011, 19, 74-79.
19 Xu, W.; Liu, L. Z.; Loizidou, M.; Ahmed, M.; Charles, I. G. Cell Res. 2002, 12, 311-320.   DOI
20 Zhang, P. C.; Wang, S.; Wu, Y.; Chen, R. Y.; Yu, D. Q. J. Nat. Prod. 2001, 64, 1206-1209.   DOI
21 Lemmich, J.; Havelund, S.; Thastrup, O. Phytochemistry 1983, 22, 553-555.   DOI